AWPNLI task implementation for paper A Neural-Symbolic Approach to Natural Language Understanding
- install the dependencies in
requirement.txt
- install the spacy small en language model.
- split the labeled AWP dataset, see
labeled_data/AWPNLI.jsonl
python3 src/split_dataset.py \
--input_data_file labeled_data/AWPNLI.jsonl \
--output_data_folder dataset/AWPNLI \
--mode=cv-10
- run the specific model on the specific split by setting the config file in the
config
folder. e.g.
python3 src/launch_experiment.py -c $config_file --cuda $cuda
- gather results by in the default output folder
experiment
python3 src/log_reader.py --folder experiment
Step 2-4 can also be found in run.sh
file
{bart/roberta}_cls_3way
: neural NLI classifierbart_forms_3way
: symbolic executionshared_encoder_3way
: neural symbolic with shared encoder
If our work inspires you, please cite
@inproceedings{liu2022a,
title={A Neural-Symbolic Approach to Natural Language Understanding},
author={Liu, Zhixuan and Wang, Zihao and Lin, Yuan and Li, Hang},
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2022},
year={2022}
}