-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'feature-gridap-embedded-compat' of github.com:zjwegert/…
…GridapTopOpt.jl into feature-gridap-embedded-compat
- Loading branch information
Showing
29 changed files
with
2,100 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
using Test | ||
|
||
using GridapTopOpt | ||
using Gridap | ||
|
||
using GridapDistributed, PartitionedArrays | ||
|
||
using GridapEmbedded | ||
using GridapEmbedded.LevelSetCutters | ||
using Gridap.Geometry, Gridap.FESpaces, Gridap.CellData, Gridap.Adaptivity | ||
|
||
using GridapTopOpt: get_subfacet_normal_vector, get_ghost_normal_vector | ||
using GridapTopOpt: get_conormal_vector, get_tangent_vector | ||
|
||
using GridapDistributed: DistributedTriangulation, DistributedDomainContribution | ||
|
||
order = 1 | ||
n = 16 | ||
|
||
parts = (2,2) | ||
ranks = DebugArray(LinearIndices((prod(parts),))) | ||
|
||
# _model = CartesianDiscreteModel(ranks,parts,(0,1,0,1),(n,n)) | ||
_model = CartesianDiscreteModel((0,1,0,1),(n,n)) | ||
|
||
base_model = UnstructuredDiscreteModel(_model) | ||
ref_model = refine(base_model, refinement_method = "barycentric") | ||
model = Gridap.Adaptivity.get_model(ref_model) | ||
|
||
reffe = ReferenceFE(lagrangian,Float64,order) | ||
V_φ = TestFESpace(model,reffe) | ||
|
||
φh = interpolate(x->sqrt((x[1]-0.5)^2+(x[2]-0.5)^2)-0.5223,V_φ) # Circle | ||
fh = interpolate(x->cos(x[1]*x[2]),V_φ) | ||
|
||
geo = DiscreteGeometry(φh,model) | ||
cutgeo = cut(model,geo) | ||
|
||
Γ = EmbeddedBoundary(cutgeo) | ||
Γ_AD = DifferentiableTriangulation(Γ,V_φ) | ||
dΓ_AD = Measure(Γ_AD,2*order) | ||
|
||
g(fh) = ∇(fh)⋅∇(fh) | ||
|
||
J_int2(φ) = ∫(g(fh))dΓ_AD | ||
dJ_int_AD2 = gradient(J_int2,φh) | ||
dJ_int_AD_vec2 = assemble_vector(dJ_int_AD2,V_φ) | ||
|
||
Λ = Skeleton(Γ) | ||
Σ = Boundary(Γ) | ||
dΓ = Measure(Γ,2*order) | ||
dΛ = Measure(Λ,2*order) | ||
dΣ = Measure(Σ,2*order) | ||
|
||
n_Γ = get_normal_vector(Γ) | ||
n_S_Λ = get_normal_vector(Λ) | ||
m_k_Λ = get_conormal_vector(Λ) | ||
∇ˢφ_Λ = Operation(abs)(n_S_Λ ⋅ ∇(φh).plus) | ||
n_S_Σ = get_normal_vector(Σ) | ||
m_k_Σ = get_conormal_vector(Σ) | ||
∇ˢφ_Σ = Operation(abs)(n_S_Σ ⋅ ∇(φh)) | ||
|
||
# TODO: This currently fails with | ||
# `ERROR: This function belongs to an interface definition and cannot be used.` | ||
dJ_int_exact2(w) = ∫((-n_Γ⋅∇(g(fh)))*w/(norm ∘ (∇(φh))))dΓ + | ||
∫(-n_S_Λ ⋅ (jump(g(fh)*m_k_Λ) * mean(w) / ∇ˢφ_Λ))dΛ + | ||
∫(-n_S_Σ ⋅ (g(fh)*m_k_Σ * w / ∇ˢφ_Σ))dΣ | ||
dJ_int_exact_vec2 = assemble_vector(dJ_int_exact2,V_φ) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
226 changes: 226 additions & 0 deletions
226
scripts/Embedded/Examples/FCM_2d_thermal_with_island_checking.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
using Gridap,GridapTopOpt, GridapSolvers | ||
using Gridap.Adaptivity, Gridap.Geometry | ||
using GridapEmbedded, GridapEmbedded.LevelSetCutters | ||
|
||
using GridapTopOpt: StateParamIntegrandWithMeasure | ||
|
||
using DataStructures | ||
|
||
const CUT = 0 | ||
|
||
# TODO: Can be optimized CartesianModels | ||
function generate_neighbor_graph(model::DiscreteModel{Dc}) where Dc | ||
topo = get_grid_topology(model) | ||
cell_to_node = Geometry.get_faces(topo, Dc, 0) | ||
node_to_cell = Geometry.get_faces(topo, 0, Dc) | ||
cell_to_nbors = map(1:num_cells(model)) do cell | ||
unique(sort(vcat(map(n -> view(node_to_cell,n), view(cell_to_node,cell))...))) | ||
end | ||
return cell_to_nbors | ||
end | ||
|
||
""" | ||
Given an initial interface cell, enqueue all the CUT cells in the same interface | ||
inside the queue `q_cut` and mark them as touched in the `touched` array. | ||
""" | ||
function enqueue_interface!(q_cut,cell_to_nbors,cell_to_inoutcut,touched,cell) | ||
q = Queue{Int}(); enqueue!(q,cell) | ||
enqueue!(q_cut,cell) | ||
touched[cell] = true | ||
while !isempty(q) | ||
cell = dequeue!(q) | ||
nbors = cell_to_nbors[cell] | ||
for nbor in nbors | ||
if !touched[nbor] && (cell_to_inoutcut[nbor] == CUT) | ||
touched[nbor] = true | ||
enqueue!(q_cut,nbor) | ||
enqueue!(q,nbor) | ||
end | ||
end | ||
end | ||
end | ||
|
||
function tag_isolated_volumes( | ||
model::DiscreteModel{Dc}, cell_to_inoutcut::Vector{<:Integer} | ||
) where Dc | ||
|
||
n_cells = num_cells(model) | ||
cell_to_nbors = generate_neighbor_graph(model) | ||
|
||
n_color = 0 | ||
cell_color = zeros(Int16, n_cells) | ||
color_to_inout = Int8[] | ||
touched = falses(n_cells) | ||
q, q_cut = Queue{Int}(), Queue{Int}() | ||
|
||
# First pass: Color IN/OUT cells | ||
# - We assume that every IN/OUT transition can be bridged by a CUT cell | ||
first_cell = findfirst(state -> state != CUT, cell_to_inoutcut) | ||
enqueue!(q,first_cell); touched[first_cell] = true; # Queue first cell | ||
while !isempty(q) | ||
cell = dequeue!(q) | ||
nbors = cell_to_nbors[cell] | ||
state = cell_to_inoutcut[cell] | ||
|
||
# Mark with color | ||
if state != CUT | ||
i = findfirst(!iszero,view(cell_color,nbors)) | ||
if isnothing(i) # New patch | ||
n_color += 1 | ||
cell_color[cell] = n_color | ||
push!(color_to_inout, state) | ||
else # Existing patch | ||
color = cell_color[nbors[i]] | ||
cell_color[cell] = color | ||
end | ||
end | ||
|
||
# Queue and touch unseen neighbors | ||
# We touch neighbors here to avoid enqueuing the same cell multiple times | ||
for nbor in nbors | ||
if !touched[nbor] | ||
touched[nbor] = true | ||
enqueue!(q,nbor) | ||
if cell_to_inoutcut[nbor] == CUT | ||
enqueue_interface!(q_cut,cell_to_nbors,cell_to_inoutcut,touched,nbor) | ||
end | ||
end | ||
end | ||
end | ||
|
||
# Second pass: Color CUT cells | ||
# - We assume that every CUT cell has an IN neighbor | ||
# - We assume all IN neighbors have the same color | ||
# Then we assign the same color to the CUT cell | ||
while !isempty(q_cut) | ||
cell = dequeue!(q_cut) | ||
nbors = cell_to_nbors[cell] | ||
@assert cell_to_inoutcut[cell] == CUT | ||
|
||
i = findfirst(n -> cell_to_inoutcut[n] == IN, nbors) | ||
@assert !isnothing(i) | ||
cell_color[cell] = cell_color[nbors[i]] | ||
end | ||
|
||
return cell_color, color_to_inout | ||
end | ||
|
||
path="./results/FCM_thermal_compliance_ALM_with_islands/" | ||
rm(path,force=true,recursive=true) | ||
mkpath(path) | ||
n = 50 | ||
order = 1 | ||
γ = 0.1 | ||
max_steps = floor(Int,order*n/5) | ||
vf = 0.4 | ||
α_coeff = 4max_steps*γ | ||
iter_mod = 1 | ||
|
||
_model = CartesianDiscreteModel((0,1,0,1),(n,n)) | ||
base_model = UnstructuredDiscreteModel(_model) | ||
ref_model = refine(base_model, refinement_method = "barycentric") | ||
model = ref_model.model | ||
el_Δ = get_el_Δ(_model) | ||
h = maximum(el_Δ) | ||
h_refine = maximum(el_Δ)/2 | ||
f_Γ_D(x) = (x[1] ≈ 0.0 && (x[2] <= 0.2 + eps() || x[2] >= 0.8 - eps())) | ||
f_Γ_N(x) = (x[1] ≈ 1 && 0.4 - eps() <= x[2] <= 0.6 + eps()) | ||
update_labels!(1,model,f_Γ_D,"Gamma_D") | ||
update_labels!(2,model,f_Γ_N,"Gamma_N") | ||
|
||
## Triangulations and measures | ||
Ω = Triangulation(model) | ||
Γ_N = BoundaryTriangulation(model,tags="Gamma_N") | ||
dΩ = Measure(Ω,2*order) | ||
dΓ_N = Measure(Γ_N,2*order) | ||
vol_D = sum(∫(1)dΩ) | ||
|
||
## Levet-set function space and derivative regularisation space | ||
reffe_scalar = ReferenceFE(lagrangian,Float64,order) | ||
V_reg = TestFESpace(model,reffe_scalar;dirichlet_tags=["Gamma_N"]) | ||
U_reg = TrialFESpace(V_reg,0) | ||
V_φ = TestFESpace(model,reffe_scalar) | ||
|
||
## Levet-set function | ||
φh = interpolate(x->-cos(4π*x[1])*cos(4π*x[2])-0.4,V_φ) | ||
Ωs = EmbeddedCollection(model,φh) do cutgeo,_ | ||
Ωin = DifferentiableTriangulation(Triangulation(cutgeo,PHYSICAL_IN),V_φ) | ||
Ωout = DifferentiableTriangulation(Triangulation(cutgeo,PHYSICAL_OUT),V_φ) | ||
Γ = DifferentiableTriangulation(EmbeddedBoundary(cutgeo),V_φ) | ||
Γg = GhostSkeleton(cutgeo) | ||
Ωact = Triangulation(cutgeo,ACTIVE) | ||
(; | ||
:Ωin => Ωin, | ||
:dΩin => Measure(Ωin,2*order), | ||
:Ωout => Ωout, | ||
:dΩout => Measure(Ωout,2*order), | ||
:Γg => Γg, | ||
:dΓg => Measure(Γg,2*order), | ||
:n_Γg => get_normal_vector(Γg), | ||
:Γ => Γ, | ||
:dΓ => Measure(Γ,2*order), | ||
:Ωact => Ωact | ||
) | ||
end | ||
|
||
## Weak form | ||
const ϵ = 1e-3 | ||
a(u,v,φ) = ∫(∇(v)⋅∇(u))Ωs.dΩin + ∫(ϵ*∇(v)⋅∇(u))Ωs.dΩout | ||
l(v,φ) = ∫(v)dΓ_N | ||
|
||
## Optimisation functionals | ||
J(u,φ) = a(u,u,φ) | ||
Vol(u,φ) = ∫(1/vol_D)Ωs.dΩin - ∫(vf/vol_D)dΩ | ||
dVol(q,u,φ) = ∫(-1/vol_D*q/(norm ∘ (∇(φ))))Ωs.dΓ | ||
|
||
## Setup solver and FE operators | ||
V = TestFESpace(Ω,reffe_scalar;dirichlet_tags=["Gamma_D"]) | ||
U = TrialFESpace(V,0.0) | ||
state_map = AffineFEStateMap(a,l,U,V,V_φ,U_reg,φh) | ||
pcfs = PDEConstrainedFunctionals(J,[Vol],state_map;analytic_dC=(dVol,)) | ||
|
||
## Evolution Method | ||
evo = CutFEMEvolve(V_φ,Ωs,dΩ,h;max_steps) | ||
reinit = StabilisedReinit(V_φ,Ωs,dΩ,h;stabilisation_method=ArtificialViscosity(3.0)) | ||
ls_evo = UnfittedFEEvolution(evo,reinit) | ||
reinit!(ls_evo,φh) | ||
|
||
## Hilbertian extension-regularisation problems | ||
α = α_coeff*(h_refine/order)^2 | ||
a_hilb(p,q) =∫(α*∇(p)⋅∇(q) + p*q)dΩ; | ||
vel_ext = VelocityExtension(a_hilb,U_reg,V_reg) | ||
|
||
## Optimiser | ||
converged(m) = GridapTopOpt.default_al_converged( | ||
m; | ||
L_tol = 0.01*h_refine, | ||
C_tol = 0.01 | ||
) | ||
optimiser = AugmentedLagrangian(pcfs,ls_evo,vel_ext,φh;debug=true, | ||
γ,verbose=true,constraint_names=[:Vol],converged) | ||
for (it,uh,φh,state) in optimiser | ||
x_φ = get_free_dof_values(φh) | ||
idx = findall(isapprox(0.0;atol=10^-10),x_φ) | ||
!isempty(idx) && @warn "Boundary intersects nodes!" | ||
if iszero(it % iter_mod) | ||
geo = DiscreteGeometry(φh,model) | ||
bgcell_to_inoutcut = compute_bgcell_to_inoutcut(model,geo) | ||
colors, color_to_inout = tag_isolated_volumes(model,bgcell_to_inoutcut) | ||
|
||
writevtk(Ω,path*"Omega$it", | ||
cellfields=["φ"=>φh,"|∇(φ)|"=>(norm ∘ ∇(φh)),"uh"=>uh,"velh"=>FEFunction(V_φ,state.vel)], | ||
celldata=["inoutcut"=>bgcell_to_inoutcut,"volumes"=>colors]; | ||
append=false) | ||
writevtk(Ωs.Ωin,path*"Omega_in$it",cellfields=["uh"=>uh]) | ||
end | ||
write_history(path*"/history.txt",optimiser.history) | ||
end | ||
it = get_history(optimiser).niter; uh = get_state(pcfs) | ||
geo = DiscreteGeometry(φh,model) | ||
bgcell_to_inoutcut = compute_bgcell_to_inoutcut(model,geo) | ||
colors, color_to_inout = tag_isolated_volumes(model,bgcell_to_inoutcut) | ||
writevtk(Ω,path*"Omega$it", | ||
cellfields=["φ"=>φh,"|∇(φ)|"=>(norm ∘ ∇(φh)),"uh"=>uh], | ||
celldata=["inoutcut"=>bgcell_to_inoutcut,"volumes"=>colors]; | ||
append=false) | ||
writevtk(Ωs.Ωin,path*"Omega_in$it",cellfields=["uh"=>uh]) |
Oops, something went wrong.