-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added EmbeddedPDEConstrainedFunctionals & new test for EmbeddedDiffer…
…entiation
- Loading branch information
Showing
19 changed files
with
1,149 additions
and
538 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
using Gridap,GridapTopOpt | ||
using Gridap.Adaptivity, Gridap.Geometry | ||
using GridapEmbedded, GridapEmbedded.LevelSetCutters | ||
|
||
using GridapTopOpt: StateParamIntegrandWithMeasure | ||
|
||
path="./results/UnfittedFEM_thermal_compliance_ALM/" | ||
n = 51 | ||
order = 1 | ||
γ = 0.1 | ||
γ_reinit = 0.5 | ||
max_steps = floor(Int,order*minimum(n)/10) | ||
tol = 1/(5*order^2)/minimum(n) | ||
vf = 0.4 | ||
α_coeff = 4max_steps*γ | ||
iter_mod = 1 | ||
|
||
_model = CartesianDiscreteModel((0,1,0,1),(n,n)) | ||
base_model = UnstructuredDiscreteModel(_model) | ||
ref_model = refine(base_model, refinement_method = "barycentric") | ||
model = ref_model.model | ||
el_Δ = get_el_Δ(_model) | ||
h = maximum(el_Δ) | ||
f_Γ_D(x) = (x[1] ≈ 0.0 && (x[2] <= 0.2 + eps() || x[2] >= 0.8 - eps())) | ||
f_Γ_N(x) = (x[1] ≈ 1 && 0.4 - eps() <= x[2] <= 0.6 + eps()) | ||
update_labels!(1,model,f_Γ_D,"Gamma_D") | ||
update_labels!(2,model,f_Γ_N,"Gamma_N") | ||
|
||
## Triangulations and measures | ||
Ω = Triangulation(model) | ||
Γ_N = BoundaryTriangulation(model,tags="Gamma_N") | ||
dΩ = Measure(Ω,2*order) | ||
dΓ_N = Measure(Γ_N,2*order) | ||
vol_D = sum(∫(1)dΩ) | ||
|
||
## Levet-set function space and derivative regularisation space | ||
reffe_scalar = ReferenceFE(lagrangian,Float64,order) | ||
V_reg = TestFESpace(model,reffe_scalar;dirichlet_tags=["Gamma_N"]) | ||
U_reg = TrialFESpace(V_reg,0) | ||
V_φ = TestFESpace(model,reffe_scalar) | ||
|
||
## Levet-set function | ||
φh = interpolate(x->-cos(4π*x[1])*cos(4π*x[2])-0.2,V_φ) | ||
geo = DiscreteGeometry(φh,model) | ||
cutgeo = cut(model,geo) | ||
Ωs = EmbeddedCollection(model,φh) do cutgeo | ||
Ωin = Triangulation(cutgeo,PHYSICAL) | ||
Γg = GhostSkeleton(cutgeo) | ||
n_Γg = get_normal_vector(Γg) | ||
(; | ||
:Ωin => Ωin, | ||
:dΩin => Measure(Ωin,2*order), | ||
:Γg => Γg, | ||
:dΓg => Measure(Γg,2*order), | ||
:n_Γg => get_normal_vector(Γg) | ||
) | ||
end | ||
|
||
## Weak form | ||
const γg = 0.1 | ||
a(u,v,φ) = ∫(∇(v)⋅∇(u))Ωs.dΩin + ∫((γg*h)*jump(Ωs.n_Γg⋅∇(v))*jump(Ωs.n_Γg⋅∇(u)))Ωs.dΓg | ||
l(v,φ) = ∫(v)dΓ_N | ||
|
||
## Optimisation functionals | ||
J(u,φ) = a(u,u,φ) | ||
Vol(u,φ) = ∫(1/vol_D)Ωs.dΩin - ∫(vf/vol_D)dΩ | ||
|
||
## Setup solver and FE operators | ||
state_collection = EmbeddedCollection(model,φh) do cutgeo | ||
Ωact = Triangulation(cutgeo,ACTIVE) | ||
V = TestFESpace(Ωact,reffe_scalar;dirichlet_tags=["Gamma_D"]) | ||
U = TrialFESpace(V,0.0) | ||
|
||
Ωin = Triangulation(cutgeo,PHYSICAL) | ||
Γg = GhostSkeleton(cutgeo) | ||
n_Γg = get_normal_vector(Γg) | ||
dΩin = Measure(Ωin,2*order) | ||
dΓg = Measure(Γg,2*order) | ||
n_Γg = get_normal_vector(Γg) | ||
|
||
dΩact = Measure(Ωact,2) | ||
Ωact_out = Triangulation(cutgeo,ACTIVE_OUT) | ||
dΩact_out = Measure(Ωact_out,2) | ||
|
||
a(u,v,φ) = ∫(∇(v)⋅∇(u))dΩin + ∫((γg*h)*jump(n_Γg⋅∇(v))*jump(n_Γg⋅∇(u)))dΓg | ||
l( v,φ) = ∫(v)dΓ_N | ||
J(u,φ) = a(u,u,φ) | ||
Vol(u,φ) = ∫(1/vol_D)dΩin - ∫(vf/vol_D)dΩact - ∫(vf/vol_D)dΩact_out | ||
state_map = AffineFEStateMap(a,l,U,V,V_φ,U_reg,φh) | ||
(; | ||
:state_map => state_map, | ||
:J => StateParamIntegrandWithMeasure(J,state_map), | ||
:C => map(Ci -> StateParamIntegrandWithMeasure(Ci,state_map),(Vol,)) | ||
) | ||
end | ||
pcfs = EmbeddedPDEConstrainedFunctionals(state_collection) | ||
|
||
evaluate!(pcfs,φh) | ||
|
||
using Gridap.Arrays | ||
uh = u | ||
ttrian = Ω | ||
strian = get_triangulation(uh) | ||
|
||
D = num_cell_dims(strian) | ||
sglue = get_glue(strian,Val(D)) | ||
tglue = get_glue(ttrian,Val(D)) | ||
|
||
scells = Arrays.IdentityVector(Int32(num_cells(strian))) | ||
mcells = extend(scells,sglue.mface_to_tface) | ||
tcells = lazy_map(Reindex(mcells),tglue.tface_to_mface) | ||
collect(tcells) | ||
|
||
|
||
## Evolution Method | ||
evo = CutFEMEvolve(V_φ,Ωs,dΩ,h) | ||
reinit = StabilisedReinit(V_φ,Ωs,dΩ,h;stabilisation_method=InteriorPenalty(V_φ)) | ||
ls_evo = UnfittedFEEvolution(evo,reinit) | ||
reinit!(ls_evo,φh) | ||
|
||
## Hilbertian extension-regularisation problems | ||
α = α_coeff*maximum(el_Δ) | ||
a_hilb(p,q) =∫(α^2*∇(p)⋅∇(q) + p*q)dΩ; | ||
vel_ext = VelocityExtension(a_hilb,U_reg,V_reg) | ||
|
||
Ωs(φh) | ||
|
||
evaluate!(pcfs,φh) | ||
|
||
# ## Optimiser | ||
# optimiser = AugmentedLagrangian(pcfs,ls_evo,vel_ext,φh; | ||
# γ,γ_reinit,verbose=true,constraint_names=[:Vol]) | ||
# for (it,uh,φh) in optimiser | ||
# if iszero(it % iter_mod) | ||
# writevtk(Ω,path*"Omega$it",cellfields=["φ"=>φh,"|∇(φ)|"=>(norm ∘ ∇(φh)),"uh"=>uh]) | ||
# writevtk(Ωs.Γ,path*"Gamma_out$it",cellfields=["normal"=>get_normal_vector(_Γ)]) | ||
# end | ||
# write_history(path*"/history.txt",optimiser.history) | ||
# end | ||
# it = get_history(optimiser).niter; uh = get_state(pcfs) | ||
# writevtk(Ω,path*"Omega$it",cellfields=["φ"=>φh,"|∇(φ)|"=>(norm ∘ ∇(φh)),"uh"=>uh]) | ||
# writevtk(Ωs.Γ,path*"Gamma_out$it",cellfields=["normal"=>get_normal_vector(_Γ)]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,94 +1,115 @@ | ||
using Pkg; Pkg.activate() | ||
|
||
using Gridap,GridapTopOpt | ||
include("../embedded_measures_AD_DISABLED.jl") | ||
using Gridap.Adaptivity, Gridap.Geometry | ||
using GridapEmbedded, GridapEmbedded.LevelSetCutters | ||
|
||
function main() | ||
path="./results/UnfittedFEM_thermal_compliance_ALM/" | ||
n = 200 | ||
order = 1 | ||
γ = 0.1 | ||
γ_reinit = 0.5 | ||
max_steps = floor(Int,order*minimum(n)/10) | ||
tol = 1/(5*order^2)/minimum(n) | ||
vf = 0.4 | ||
α_coeff = 4max_steps*γ | ||
iter_mod = 1 | ||
using GridapTopOpt: StateParamIntegrandWithMeasure | ||
|
||
model = CartesianDiscreteModel((0,1,0,1),(n,n)); | ||
el_Δ = get_el_Δ(model) | ||
f_Γ_D(x) = (x[1] ≈ 0.0 && (x[2] <= 0.2 + eps() || x[2] >= 0.8 - eps())) | ||
f_Γ_N(x) = (x[1] ≈ 1 && 0.4 - eps() <= x[2] <= 0.6 + eps()) | ||
update_labels!(1,model,f_Γ_D,"Gamma_D") | ||
update_labels!(2,model,f_Γ_N,"Gamma_N") | ||
path="./results/UnfittedFEM_thermal_compliance_ALM/" | ||
mkpath(path) | ||
n = 51 | ||
order = 1 | ||
γ = 0.1 | ||
γ_reinit = 0.5 | ||
max_steps = floor(Int,order*minimum(n)/10) | ||
vf = 0.4 | ||
α_coeff = 2max_steps*γ | ||
iter_mod = 1 | ||
|
||
## Triangulations and measures | ||
Ω = Triangulation(model) | ||
Γ_N = BoundaryTriangulation(model,tags="Gamma_N") | ||
dΩ = Measure(Ω,2*order) | ||
dΓ_N = Measure(Γ_N,2*order) | ||
vol_D = sum(∫(1)dΩ) | ||
_model = CartesianDiscreteModel((0,1,0,1),(n,n)) | ||
base_model = UnstructuredDiscreteModel(_model) | ||
ref_model = refine(base_model, refinement_method = "barycentric") | ||
model = ref_model.model | ||
el_Δ = get_el_Δ(_model) | ||
h = maximum(el_Δ) | ||
h_refine = maximum(el_Δ)/2 | ||
f_Γ_D(x) = (x[1] ≈ 0.0 && (x[2] <= 0.2 + eps() || x[2] >= 0.8 - eps())) | ||
f_Γ_N(x) = (x[1] ≈ 1 && 0.4 - eps() <= x[2] <= 0.6 + eps()) | ||
update_labels!(1,model,f_Γ_D,"Gamma_D") | ||
update_labels!(2,model,f_Γ_N,"Gamma_N") | ||
|
||
## Spaces | ||
reffe_scalar = ReferenceFE(lagrangian,Float64,order) | ||
V = TestFESpace(model,reffe_scalar;dirichlet_tags=["Gamma_D"]) | ||
U = TrialFESpace(V,0.0) | ||
V_φ = TestFESpace(model,reffe_scalar) | ||
V_reg = TestFESpace(model,reffe_scalar;dirichlet_tags=["Gamma_N"]) | ||
U_reg = TrialFESpace(V_reg,0) | ||
## Triangulations and measures | ||
Ω = Triangulation(model) | ||
Γ_N = BoundaryTriangulation(model,tags="Gamma_N") | ||
dΩ = Measure(Ω,2*order) | ||
dΓ_N = Measure(Γ_N,2*order) | ||
vol_D = sum(∫(1)dΩ) | ||
|
||
## Levet-set function space and derivative regularisation space | ||
reffe_scalar = ReferenceFE(lagrangian,Float64,order) | ||
V_reg = TestFESpace(model,reffe_scalar;dirichlet_tags=["Gamma_N"]) | ||
U_reg = TrialFESpace(V_reg,0) | ||
V_φ = TestFESpace(model,reffe_scalar) | ||
|
||
φh = interpolate(x->-cos(4π*x[1])*cos(4*pi*x[2])/4-0.2/4,V_φ) | ||
embedded_meas = EmbeddedMeasureCache(φh,V_φ) | ||
update_meas(φ) = update_embedded_measures!(φ,embedded_meas) | ||
get_meas(φ) = get_embedded_measures(φ,embedded_meas) | ||
## Levet-set function | ||
φh = interpolate(x->-cos(4π*x[1])*cos(4π*x[2])-0.2,V_φ) | ||
Ωs = EmbeddedCollection(model,φh) do cutgeo | ||
Ωin = DifferentiableTriangulation(Triangulation(cutgeo,PHYSICAL)) | ||
Γg = DifferentiableTriangulation(GhostSkeleton(cutgeo)) | ||
n_Γg = get_normal_vector(Γg) | ||
Γ = DifferentiableTriangulation(EmbeddedBoundary(cutgeo)) | ||
(; | ||
:Ωin => Ωin, | ||
:dΩin => Measure(Ωin,2*order), | ||
:Γg => Γg, | ||
:dΓg => Measure(Γg,2*order), | ||
:n_Γg => get_normal_vector(Γg), | ||
:Γ => Γ, | ||
:dΓ => Measure(Γ,2*order) | ||
) | ||
end | ||
|
||
## Weak form | ||
a(u,v,φ,dΩ,dΓ_N,dΩ1,dΩ2,dΓ) = ∫(∇(u)⋅∇(v))dΩ1 + ∫(10^-6*∇(u)⋅∇(v))dΩ2 | ||
l(v,φ,dΩ,dΓ_N,dΩ1,dΩ2,dΓ) = ∫(v)dΓ_N | ||
## Weak form | ||
const γg = 0.1 | ||
a(u,v,φ) = ∫(∇(v)⋅∇(u))Ωs.dΩin + ∫((γg*h)*jump(Ωs.n_Γg⋅∇(v))*jump(Ωs.n_Γg⋅∇(u)))Ωs.dΓg | ||
l(v,φ) = ∫(v)dΓ_N | ||
|
||
## Optimisation functionals | ||
J(u,φ,dΩ,dΓ_N,dΩ1,dΩ2,dΓ) = ∫(∇(u)⋅∇(u))dΩ1 | ||
dJ(q,u,φ,dΩ,dΓ_N,dΩ1,dΩ2,dΓ) = ∫(∇(u)⋅∇(u)*q)dΓ; | ||
Vol(u,φ,dΩ,dΓ_N,dΩ1,dΩ2,dΓ) = ∫(1/vol_D)dΩ1 - ∫(vf/vol_D)dΩ; | ||
dVol(q,u,φ,dΩ,dΓ_N,dΩ1,dΩ2,dΓ) = ∫(-1/vol_D*q)dΓ | ||
## Optimisation functionals | ||
J(u,φ) = ∫(∇(u)⋅∇(u))Ωs.dΩin | ||
Vol(u,φ) = ∫(1/vol_D)Ωs.dΩin - ∫(vf/vol_D)dΩ | ||
dVol(q,u,φ) = ∫(-1/vol_D*q/(norm ∘ (∇(φ))))Ωs.dΓ | ||
|
||
## IntegrandWithEmbeddedMeasure | ||
a_iem = IntegrandWithEmbeddedMeasure(a,(dΩ,dΓ_N),update_meas) | ||
l_iem = IntegrandWithEmbeddedMeasure(l,(dΩ,dΓ_N),update_meas) | ||
J_iem = IntegrandWithEmbeddedMeasure(J,(dΩ,dΓ_N),update_meas) | ||
dJ_iem = IntegrandWithEmbeddedMeasure(dJ,(dΩ,dΓ_N),update_meas) | ||
Vol_iem = IntegrandWithEmbeddedMeasure(Vol,(dΩ,dΓ_N),update_meas) | ||
dVol_iem = IntegrandWithEmbeddedMeasure(dVol,(dΩ,dΓ_N),update_meas) | ||
## Setup solver and FE operators | ||
state_collection = EmbeddedCollection(model,φh) do cutgeo | ||
Ωact = Triangulation(cutgeo,ACTIVE) | ||
V = TestFESpace(Ωact,reffe_scalar;dirichlet_tags=["Gamma_D"]) | ||
U = TrialFESpace(V,0.0) | ||
state_map = AffineFEStateMap(a,l,U,V,V_φ,U_reg,φh) | ||
(; | ||
:state_map => state_map, | ||
:J => StateParamIntegrandWithMeasure(J,state_map), | ||
:C => map(Ci -> StateParamIntegrandWithMeasure(Ci,state_map),[Vol,]) | ||
) | ||
end | ||
pcfs = EmbeddedPDEConstrainedFunctionals(state_collection;analytic_dC=(dVol,)) | ||
|
||
## Evolution Method | ||
evo = CutFEMEvolve(V_φ,Ωs,dΩ,h) | ||
reinit = StabilisedReinit(V_φ,Ωs,dΩ,h;stabilisation_method=InteriorPenalty(V_φ)) | ||
ls_evo = UnfittedFEEvolution(evo,reinit) | ||
# reinit!(ls_evo,φh) | ||
|
||
## Evolution Method | ||
ls_evo = HamiltonJacobiEvolution(FirstOrderStencil(2,Float64),model,V_φ,tol,max_steps) | ||
## Hilbertian extension-regularisation problems | ||
# α = α_coeff*(h_refine/order)^2 | ||
# a_hilb(p,q) =∫(α*∇(p)⋅∇(q) + p*q)dΩ; | ||
α = α_coeff*h_refine | ||
a_hilb(p,q) = ∫(α^2*∇(p)⋅∇(q) + p*q)dΩ; | ||
vel_ext = VelocityExtension(a_hilb,U_reg,V_reg) | ||
|
||
## Setup solver and FE operators | ||
state_map = AffineFEStateMap(a_iem,l_iem,U,V,V_φ,U_reg,φh,(dΩ,dΓ_N)) | ||
pcfs = PDEConstrainedFunctionals(J_iem,[Vol_iem],state_map,analytic_dJ=dJ_iem,analytic_dC=[dVol_iem]) | ||
|
||
## Hilbertian extension-regularisation problems | ||
α = α_coeff*maximum(el_Δ) | ||
a_hilb(p,q) =∫(α^2*∇(p)⋅∇(q) + p*q)dΩ; | ||
vel_ext = VelocityExtension(a_hilb,U_reg,V_reg) | ||
## Forward problem and derivatives | ||
_j,_c,_dJ,_dC = evaluate!(pcfs,φh) | ||
writevtk(Ω,path*"check_dJ",cellfields=["dJ"=>FEFunction(dJ,U_reg)]) | ||
|
||
## Optimiser | ||
rm(path,force=true,recursive=true) | ||
mkpath(path) | ||
optimiser = AugmentedLagrangian(pcfs,ls_evo,vel_ext,φh;reinit_mod=5, | ||
γ,γ_reinit,verbose=true,constraint_names=[:Vol]) | ||
for (it,uh,φh) in optimiser | ||
_Ω1,_,_Γ = get_embedded_triangulations(embedded_meas) | ||
if iszero(it % iter_mod) | ||
writevtk(_Ω1,path*"Omega_out$it",cellfields=["φ"=>φh,"|∇(φ)|"=>(norm ∘ ∇(φh)),"uh"=>uh]) | ||
writevtk(_Γ,path*"Gamma_out$it",cellfields=["normal"=>get_normal_vector(_Γ)]) | ||
end | ||
write_history(path*"/history.txt",optimiser.history) | ||
## Optimiser | ||
optimiser = HilbertianProjection(pcfs,ls_evo,vel_ext,φh;debug=true, | ||
γ,γ_reinit,verbose=true,constraint_names=[:Vol]) | ||
for (it,uh,φh,state) in optimiser | ||
if iszero(it % iter_mod) | ||
writevtk(Ω,path*"Omega$it",cellfields=["φ"=>φh,"|∇(φ)|"=>(norm ∘ ∇(φh)),"uh"=>uh,"velh"=>FEFunction(V_φ,state.vel)]) | ||
writevtk(Ωs.Γ,path*"Gamma_out$it",cellfields=["normal"=>get_normal_vector(Ωs.Γ)]) | ||
end | ||
it = get_history(optimiser).niter; uh = get_state(pcfs) | ||
_Ω1,_,_Γ = get_embedded_triangulations(embedded_meas) | ||
writevtk(_Ω1,path*"Omega_out$it",cellfields=["φ"=>φh,"|∇(φ)|"=>(norm ∘ ∇(φh)),"uh"=>uh]) | ||
writevtk(_Γ,path*"Gamma_out$it",cellfields=["normal"=>get_normal_vector(_Γ)]) | ||
write_history(path*"/history.txt",optimiser.history) | ||
end | ||
|
||
main() | ||
it = get_history(optimiser).niter; uh = get_state(pcfs) | ||
writevtk(Ω,path*"Omega$it",cellfields=["φ"=>φh,"|∇(φ)|"=>(norm ∘ ∇(φh)),"uh"=>uh]) | ||
writevtk(Ωs.Γ,path*"Gamma_out$it",cellfields=["normal"=>get_normal_vector(Ωs.Γ)]) |
File renamed without changes.
File renamed without changes.
Oops, something went wrong.