-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Name corrections + remove TODO + 2d pz dev script
- Loading branch information
Showing
6 changed files
with
251 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
MIT License | ||
|
||
Copyright (c) 2024 [Zachary Wegert](mailto:[email protected]), [Jordi Fuertes](mailto:[email protected]), [Connor Mallon](mailto:[email protected]), [Santiago Badia](mailto:[email protected]) and [Vivien Challis](mailto:[email protected]) | ||
Copyright (c) 2024 [Zachary Wegert](mailto:[email protected]), [Jordi Manyer](mailto:[email protected]), [Connor Mallon](mailto:[email protected]), [Santiago Badia](mailto:[email protected]) and [Vivien Challis](mailto:[email protected]) | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
using LevelSetTopOpt, Gridap | ||
|
||
using Gridap, Gridap.TensorValues, Gridap.Geometry, Gridap.FESpaces, Gridap.Helpers, Gridap.Algebra | ||
using GridapDistributed | ||
using GridapPETSc | ||
using GridapPETSc: PetscScalar, PetscInt, PETSC, @check_error_code | ||
using PartitionedArrays | ||
using SparseMatricesCSR | ||
using ChainRulesCore | ||
|
||
using GridapSolvers | ||
using Gridap.MultiField | ||
|
||
## Piezo helpers | ||
function PZT5A(D::Int) | ||
ε_0 = 8.854e-12; | ||
if D == 3 | ||
C_Voigt = [12.0400e10 7.52000e10 7.51000e10 0.0 0.0 0.0 | ||
7.52000e10 12.0400e10 7.51000e10 0.0 0.0 0.0 | ||
7.51000e10 7.51000e10 11.0900e10 0.0 0.0 0.0 | ||
0.0 0.0 0.0 2.1000e10 0.0 0.0 | ||
0.0 0.0 0.0 0.0 2.1000e10 0.0 | ||
0.0 0.0 0.0 0.0 0.0 2.30e10] | ||
e_Voigt = [0.0 0.0 0.0 0.0 12.30000 0.0 | ||
0.0 0.0 0.0 12.30000 0.0 0.0 | ||
-5.40000 -5.40000 15.80000 0.0 0.0 0.0] | ||
K_Voigt = [540*ε_0 0 0 | ||
0 540*ε_0 0 | ||
0 0 830*ε_0] | ||
elseif D == 2 | ||
C_Voigt = [12.0400e10 7.51000e10 0.0 | ||
7.51000e10 11.0900e10 0.0 | ||
0.0 0.0 2.1000e10] | ||
e_Voigt = [0.0 0.0 12.30000 | ||
-5.40000 15.80000 0.0] | ||
K_Voigt = [540*ε_0 0 | ||
0 830*ε_0] | ||
else | ||
@notimplemented | ||
end | ||
C = voigt2tensor4(C_Voigt) | ||
e = voigt2tensor3(e_Voigt) | ||
κ = voigt2tensor2(K_Voigt) | ||
C,e,κ | ||
end | ||
|
||
""" | ||
Given a material constant given in Voigt notation, | ||
return a SymFourthOrderTensorValue using ordering from Gridap | ||
""" | ||
function voigt2tensor4(A::Array{M,2}) where M | ||
if isequal(size(A),(3,3)) | ||
return SymFourthOrderTensorValue(A[1,1], A[3,1], A[2,1], | ||
A[1,3], A[3,3], A[2,3], | ||
A[1,2], A[3,2], A[2,2]) | ||
elseif isequal(size(A),(6,6)) | ||
return SymFourthOrderTensorValue(A[1,1], A[6,1], A[5,1], A[2,1], A[4,1], A[3,1], | ||
A[1,6], A[6,6], A[5,6], A[2,6], A[4,6], A[3,6], | ||
A[1,5], A[6,5], A[5,5], A[2,5], A[4,5], A[3,5], | ||
A[1,2], A[6,2], A[5,2], A[2,2], A[4,2], A[3,2], | ||
A[1,4], A[6,4], A[5,4], A[2,4], A[4,4], A[3,4], | ||
A[1,3], A[6,3], A[5,3], A[2,3], A[4,3], A[3,3]) | ||
else | ||
@notimplemented | ||
end | ||
end | ||
|
||
""" | ||
Given a material constant given in Voigt notation, | ||
return a ThirdOrderTensorValue using ordering from Gridap | ||
""" | ||
function voigt2tensor3(A::Array{M,2}) where M | ||
if isequal(size(A),(2,3)) | ||
return ThirdOrderTensorValue(A[1,1], A[2,1], A[1,3], A[2,3], A[1,3], A[2,3], A[1,2], A[2,2]) | ||
elseif isequal(size(A),(3,6)) | ||
return ThirdOrderTensorValue( | ||
A[1,1], A[2,1], A[3,1], A[1,6], A[2,6], A[3,6], A[1,5], A[2,5], A[3,5], | ||
A[1,6], A[2,6], A[3,6], A[1,2], A[2,2], A[3,2], A[1,4], A[2,4], A[3,4], | ||
A[1,5], A[2,5], A[3,5], A[1,4], A[2,4], A[3,4], A[1,3], A[2,3], A[3,3]) | ||
else | ||
@notimplemented | ||
end | ||
end | ||
|
||
""" | ||
Given a material constant given in Voigt notation, | ||
return a SymTensorValue using ordering from Gridap | ||
""" | ||
function voigt2tensor2(A::Array{M,2}) where M | ||
return TensorValue(A) | ||
end | ||
|
||
## Parameters | ||
el_size = (100,100) | ||
order = 1 | ||
xmax,ymax=(1.0,1.0) | ||
dom = (0,xmax,0,ymax) | ||
γ = 0.1 | ||
γ_reinit = 0.5 | ||
max_steps = floor(Int,order*minimum(el_size)/10) | ||
tol = 1/(5order^2)/minimum(el_size) | ||
η_coeff = 2 | ||
α_coeff = 4*max_steps*γ | ||
vf = 0.5 | ||
path = dirname(dirname(@__DIR__))*"/results/2d_PZ_inverse_homenisation_ALM" | ||
|
||
## FE Setup | ||
model = CartesianDiscreteModel(dom,el_size,isperiodic=(true,true)) | ||
el_Δ = get_el_Δ(model) | ||
f_Γ_D(x) = iszero(x) | ||
update_labels!(1,model,f_Γ_D,"origin") | ||
|
||
## Triangulations and measures | ||
Ω = Triangulation(model) | ||
dΩ = Measure(Ω,2*order) | ||
vol_D = sum(∫(1)dΩ) | ||
|
||
## Spaces | ||
reffe = ReferenceFE(lagrangian,VectorValue{2,Float64},order) | ||
reffe_scalar = ReferenceFE(lagrangian,Float64,order) | ||
V = TestFESpace(model,reffe;conformity=:H1,dirichlet_tags=["origin"]) | ||
U = TrialFESpace(V,VectorValue(0.0,0.0)) | ||
Q = TestFESpace(model,reffe_scalar;conformity=:H1,dirichlet_tags=["origin"]) | ||
P = TrialFESpace(Q,0) | ||
# mfs = BlockMultiFieldStyle() | ||
UP = MultiFieldFESpace([U,P])#;style=mfs) | ||
VQ = MultiFieldFESpace([V,Q])#;style=mfs) | ||
|
||
V_φ = TestFESpace(model,reffe_scalar) | ||
V_reg = TestFESpace(model,reffe_scalar) | ||
U_reg = TrialFESpace(V_reg) | ||
|
||
## Create FE functions | ||
φh = interpolate(initial_lsf(4,0.2),V_φ) | ||
|
||
## Interpolation and weak form | ||
interp = SmoothErsatzMaterialInterpolation(η = η_coeff*maximum(el_Δ))#,ϵ=10^-9) | ||
I,H,DH,ρ = interp.I,interp.H,interp.DH,interp.ρ | ||
|
||
## Material tensors | ||
C, e, κ = PZT5A(2); | ||
k0 = norm(C.data,Inf); | ||
α0 = norm(e.data,Inf); | ||
β0 = norm(κ.data,Inf); | ||
γ = β0*k0/α0^2; | ||
|
||
## Weak forms | ||
εᴹ = (SymTensorValue(1.0,0.0,0.0), | ||
SymTensorValue(0.0,0.0,1.0), | ||
SymTensorValue(0.0,1/2,0)) | ||
Eⁱ = (VectorValue(1.0,0.0,), | ||
VectorValue(0.0,1.0)) | ||
|
||
a((u,ϕ),(v,q),φ,dΩ) = ∫((I ∘ φ) * (1/k0*((C ⊙ ε(u)) ⊙ ε(v)) - | ||
1/α0*((-∇(ϕ) ⋅ e) ⊙ ε(v)) + | ||
-1/α0*((e ⋅² ε(u)) ⋅ -∇(q)) + | ||
-γ/β0*((κ ⋅ -∇(ϕ)) ⋅ -∇(q))) )dΩ; | ||
|
||
l_ε = [((v,q),φ,dΩ) -> ∫(((I ∘ φ) * (-C ⊙ εᴹ[i] ⊙ ε(v) + k0/α0*(e ⋅² εᴹ[i]) ⋅ -∇(q))))dΩ for i = 1:3]; | ||
l_E = [((v,q),φ,dΩ) -> ∫((I ∘ φ) * ((Eⁱ[i] ⋅ e ⊙ ε(v) + k0/α0*(κ ⋅ Eⁱ[i]) ⋅ -∇(q))))dΩ for i = 1:2]; | ||
l = [l_ε; l_E] | ||
|
||
state_map = RepeatingAffineFEStateMap(5,a,l,UP,VQ,V_φ,U_reg,φh,dΩ) | ||
|
||
x = state_map(φh) | ||
U = LevelSetTopOpt.get_trial_space(state_map) | ||
xh = FEFunction(U,x) | ||
# u1,ϕ1,u2,ϕ2,u3,ϕ3,u4,ϕ4,u5,ϕ5 = xh | ||
|
||
|
||
function Cᴴ(r,s,uϕ,φ,dΩ) # (normalised by 1/k0) | ||
u_s = uϕ[2s-1]; ϕ_s = uϕ[2s] | ||
∫(1/k0 * (I ∘ φ) * (((C ⊙ (1/k0*ε(u_s) + εᴹ[s])) ⊙ εᴹ[r]) + ((1/α0*∇(ϕ_s) ⋅ e) ⊙ εᴹ[r])))dΩ; | ||
end | ||
|
||
function eᴴ(i,s,uϕ,φ,dΩ) # (normalised by 1/α0) | ||
u_s = uϕ[2s-1]; ϕ_s = uϕ[2s] | ||
∫(1/α0 * (I ∘ φ) * (((e ⋅² (1/k0*ε(u_s) + εᴹ[s])) ⋅ Eⁱ[i]) + ((κ ⋅ (-1/α0*∇(ϕ_s))) ⋅ Eⁱ[i])))dΩ; | ||
end | ||
|
||
function κᴴ(i,j,uϕ,φ,dΩ) # (normalised by 1/β0) | ||
u_j = uϕ[6+2j-1]; ϕ_j = uϕ[6+2j] | ||
∫(1/β0 * (I ∘ φ) * (((e ⋅² (1/k0*ε(u_j)) ⋅ Eⁱ[i]) + ((κ ⋅ (-1/α0*∇(ϕ_j) + Eⁱ[j])) ⋅ Eⁱ[i]))))dΩ; | ||
end | ||
|
||
function dᴴ(uϕ,φ,dΩ) | ||
_Cᴴ(r,s) = sum(Cᴴ(r,s,uϕ,φ,dΩ)) | ||
_eᴴ(i,s) = sum(eᴴ(i,s,uϕ,φ,dΩ)) | ||
(_Cᴴ(2,2)*_eᴴ(2,1) + _Cᴴ(1,1)*_eᴴ(2,2) - _Cᴴ(2,1)*(_eᴴ(2,1) + _eᴴ(2,2)))/ | ||
(_Cᴴ(1,1)*_Cᴴ(2,2) - _Cᴴ(2,1)^2) | ||
end | ||
|
||
# map(rs->sum(Cᴴ(rs[1],rs[2],xh,φh,dΩ)), CartesianIndices((1:3, 1:3))) | ||
# map(is->sum(eᴴ(is[1],is[2],xh,φh,dΩ)), CartesianIndices((1:2, 1:3))) | ||
# map(ij->sum(κᴴ(ij[1],ij[2],xh,φh,dΩ)), CartesianIndices((1:2, 1:2))) | ||
dᴴ(xh,φh,dΩ)#*α0/k0 | ||
|
||
C_mat = map(rs->sum(Cᴴ(rs[1],rs[2],xh,φh,dΩ)), CartesianIndices((1:3, 1:3))) | ||
e_mat = map(is->sum(eᴴ(is[1],is[2],xh,φh,dΩ)), CartesianIndices((1:2, 1:3))) | ||
d_mat = e_mat*inv(C_mat); | ||
dh = d_mat[2,1] + d_mat[2,2] | ||
|
||
nothing | ||
# ## Optimisation functionals | ||
# J((u, p),φ,dΩ) = ∫(0)dΩ | ||
# dJ(q,(u, p),φ,dΩ) = ∫(0q)dΩ | ||
# Vol((u, p),φ,dΩ) = ∫(((ρ ∘ φ) - vf)/vol_D)dΩ; | ||
# dVol(q,(u, p),φ,dΩ) = ∫(1/vol_D*q*(DH ∘ φ)*(norm ∘ ∇(φ)))dΩ | ||
|
||
# ## Finite difference solver and level set function | ||
# stencil = AdvectionStencil(FirstOrderStencil(2,Float64),model,V_φ,tol,max_steps) | ||
|
||
# ## Setup solver and FE operators | ||
# state_map = RepeatingAffineFEStateMap(5,a,l,UP,VQ,V_φ,U_reg,φh,dΩ) | ||
# pcfs = PDEConstrainedFunctionals(J,[Vol],state_map;analytic_dJ=dJ,analytic_dC=[dVol]) | ||
|
||
# evaluate!(pcfs,φh) | ||
|
||
# ## Hilbertian extension-regularisation problems | ||
# α = α_coeff*maximum(el_Δ) | ||
# a_hilb(p,q) = ∫(α^2*∇(p)⋅∇(q) + p*q)dΩ; | ||
# vel_ext = VelocityExtension( | ||
# a_hilb,U_reg,V_reg, | ||
# assem = SparseMatrixAssembler(Tm,Tv,U_reg,V_reg), | ||
# ls = PETScLinearSolver() | ||
# ) | ||
|
||
# ## Optimiser | ||
# make_dir(path;ranks=ranks) | ||
# optimiser = AugmentedLagrangian(pcfs,stencil,vel_ext,φh;γ,γ_reinit,verbose=i_am_main(ranks)) | ||
# for (it, uh, φh) in optimiser | ||
# write_vtk(Ω,path*"/struc_$it",it,["phi"=>φh,"H(phi)"=>(H ∘ φh),"|nabla(phi)|"=>(norm ∘ ∇(φh)),"uh"=>uh]) | ||
# write_history(path*"/history.txt",optimiser.history;ranks=ranks) | ||
# end | ||
# it = optimiser.history.niter; uh = get_state(optimiser.problem) | ||
# write_vtk(Ω,path*"/struc_$it",it,["phi"=>φh,"H(phi)"=>(H ∘ φh),"|nabla(phi)|"=>(norm ∘ ∇(φh)),"uh"=>uh];iter_mod=1) | ||
|
||
|
||
function dh(stuff) | ||
C(M,N) = @notimplemented | ||
e(i,M) = @notimplemented | ||
dh = (C23^2*e31 - C22*C33*e31 + C13^2*e32 + C11*C23*e32 - C11*C33*e32 + | ||
C12*C33*(e31 + e32) + C12^2*e33 + C11*(-C22 + C23)*e33 - C12*C23*(e31 + e33) + | ||
C13*(-(C23*(e31 + e32)) + C22*(e31 + e33) - C12*(e32 + e33)))/( | ||
C13^2*C22 - 2*C12*C13*C23 + C12^2*C33 + C11*(C23^2 - C22*C33)) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters