Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bugfix: AD for RepeatingAffineFEStateMaps #45

Merged
merged 7 commits into from
Mar 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,6 @@ deps/src/
# Build artifacts for creating documentation generated by the Documenter package
docs/build/
docs/site/
Results/*
results/*

# File generated by Pkg, the package manager, based on a corresponding Project.toml
# It records a fixed state of all packages used by the project. As such, it should not be
Expand Down
2 changes: 2 additions & 0 deletions results/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
*
!.gitignore
1 change: 0 additions & 1 deletion results/empty

This file was deleted.

114 changes: 114 additions & 0 deletions scripts/_dev/mem_leak.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
using Gridap, LevelSetTopOpt

# FE parameters
order = 1 # Finite element order
xmax=ymax=zmax=1.0 # Domain size
dom = (0,xmax,0,ymax,0,zmax) # Bounding domain
el_size = (10,10,10) # Mesh partition size
prop_Γ_N = 0.4 # Γ_N size parameter
prop_Γ_D = 0.2 # Γ_D size parameter
f_Γ_N(x) = (x[1] ≈ xmax) && # Γ_N indicator function
(ymax/2-ymax*prop_Γ_N/4 - eps() <= x[2] <= ymax/2+ymax*prop_Γ_N/4 + eps()) &&
(zmax/2-zmax*prop_Γ_N/4 - eps() <= x[3] <= zmax/2+zmax*prop_Γ_N/4 + eps())
f_Γ_D(x) = (x[1] ≈ 0.0) && # Γ_D indicator function
(x[2] <= ymax*prop_Γ_D + eps() || x[2] >= ymax-ymax*prop_Γ_D - eps()) &&
(x[3] <= zmax*prop_Γ_D + eps() || x[3] >= zmax-zmax*prop_Γ_D - eps())
# FD parameters
γ = 0.1 # HJ equation time step coefficient
γ_reinit = 0.5 # Reinit. equation time step coefficient
max_steps = floor(Int,minimum(el_size)/3) # Max steps for advection
tol = 1/(2*order^2)*prod(inv,minimum(el_size)) # Advection tolerance
# Problem parameters
κ = 1 # Diffusivity
g = 1 # Heat flow in
vf = 0.4 # Volume fraction constraint
lsf_func = initial_lsf(4,0.2) # Initial level set function
iter_mod = 10 # Output VTK files every 10th iteration

# Model
model = CartesianDiscreteModel(dom,el_size);
update_labels!(1,model,f_Γ_D,"Gamma_D")
update_labels!(2,model,f_Γ_N,"Gamma_N")
# Triangulation and measures
Ω = Triangulation(model)
Γ_N = BoundaryTriangulation(model,tags="Gamma_N")
dΩ = Measure(Ω,2*order)
dΓ_N = Measure(Γ_N,2*order)
# Spaces
reffe = ReferenceFE(lagrangian,Float64,order)
V = TestFESpace(model,reffe;dirichlet_tags=["Gamma_D"])
U = TrialFESpace(V,0.0)
V_φ = TestFESpace(model,reffe)
V_reg = TestFESpace(model,reffe;dirichlet_tags=["Gamma_N"])
U_reg = TrialFESpace(V_reg,0)
# Level set and interpolator
φh = interpolate(lsf_func,V_φ)
interp = SmoothErsatzMaterialInterpolation(η = 2*maximum(get_el_Δ(model)))
I,H,DH,ρ = interp.I,interp.H,interp.DH,interp.ρ
# Weak formulation
a(u,v,φ,dΩ,dΓ_N) = ∫((I ∘ φ)*κ*∇(u)⋅∇(v))dΩ
l(v,φ,dΩ,dΓ_N) = ∫(g*v)dΓ_N
state_map = AffineFEStateMap(a,l,U,V,V_φ,U_reg,φh,dΩ,dΓ_N)
# Objective and constraints
J(u,φ,dΩ,dΓ_N) = ∫((I ∘ φ)*κ*∇(u)⋅∇(u))dΩ
dJ(q,u,φ,dΩ,dΓ_N) = ∫(κ*∇(u)⋅∇(u)*q*(DH ∘ φ)*(norm ∘ ∇(φ)))dΩ
vol_D = sum(∫(1)dΩ)
C(u,φ,dΩ,dΓ_N) = ∫(((ρ ∘ φ) - vf)/vol_D)dΩ
dC(q,u,φ,dΩ,dΓ_N) = ∫(-1/vol_D*q*(DH ∘ φ)*(norm ∘ ∇(φ)))dΩ
pcfs = PDEConstrainedFunctionals(J,[C],state_map,analytic_dJ=dJ,analytic_dC=[dC])
# Velocity extension
α = 4*maximum(get_el_Δ(model))
a_hilb(p,q) =∫(α^2*∇(p)⋅∇(q) + p*q)dΩ
vel_ext = VelocityExtension(a_hilb,U_reg,V_reg)
# Finite difference scheme
scheme = FirstOrderStencil(length(el_size),Float64)
stencil = AdvectionStencil(scheme,model,V_φ,tol,max_steps)
# Optimiser
optimiser = AugmentedLagrangian(pcfs,stencil,vel_ext,φh;γ,γ_reinit,verbose=true,constraint_names=[:Vol])
# Solve
for i = 1:10
LevelSetTopOpt.rrule(state_map,φh)
end

evaluate!(pcfs,φh);
uh = get_state(state_map)

GC.gc()
Sys.free_memory() / 2^20

for i = 1:10
begin
u = LevelSetTopOpt.forward_solve!(state_map,φh);
uh = FEFunction(LevelSetTopOpt.get_trial_space(state_map),u);
# LevelSetTopOpt.update_adjoint_caches!(state_map,uh,φh);
end;
end;

Sys.free_memory() / 2^20

GC.gc()
Sys.free_memory() / 2^20

for i = 1:10
begin
# u = LevelSetTopOpt.forward_solve!(state_map,φh);
# uh = FEFunction(LevelSetTopOpt.get_trial_space(state_map),u);

LevelSetTopOpt.update_adjoint_caches!(state_map,uh,φh);
end;
end;

Sys.free_memory() / 2^20

GC.gc()
Sys.free_memory() / 2^20

for i = 1:10
begin
u = LevelSetTopOpt.forward_solve!(state_map,φh);
uh = FEFunction(LevelSetTopOpt.get_trial_space(state_map),u);
LevelSetTopOpt.update_adjoint_caches!(state_map,uh,φh);
end;
end;

Sys.free_memory() / 2^20
23 changes: 14 additions & 9 deletions src/ChainRules.jl
Original file line number Diff line number Diff line change
Expand Up @@ -707,10 +707,15 @@ struct RepeatingAffineFEStateMap{A,B,C,D,E,F,G} <: AbstractFEStateMap
@check nblocks == length(l)

spaces_0 = (U0,V0)
assem_U0 = assem_U

biform = IntegrandWithMeasure(a,dΩ)
liforms = map(li -> IntegrandWithMeasure(li,dΩ),l)
U, V = repeat_spaces(nblocks,U0,V0)
spaces = (U,V,V_φ,U_reg)
assem_U = SparseMatrixAssembler(
get_matrix_type(assem_U0),get_vector_type(assem_U0),U,V,FESpaces.get_assembly_strategy(assem_U0)
)

## Pullback cache
uhd = zero(U0)
Expand All @@ -722,12 +727,12 @@ struct RepeatingAffineFEStateMap{A,B,C,D,E,F,G} <: AbstractFEStateMap
plb_caches = (dudφ_vec,assem_deriv)

## Forward cache
K = assemble_matrix((u,v) -> biform(u,v,φh),assem_U,U0,V0)
K = assemble_matrix((u,v) -> biform(u,v,φh),assem_U0,U0,V0)
b = allocate_in_range(K); fill!(b,zero(eltype(b)))
b0 = allocate_in_range(K); fill!(b0,zero(eltype(b0)))
x = mortar(map(i -> allocate_in_domain(K), 1:nblocks)); fill!(x,zero(eltype(x)))
ns = numerical_setup(symbolic_setup(ls,K),K)
fwd_caches = (ns,K,b,x,uhd,assem_U,b0)
fwd_caches = (ns,K,b,x,uhd,assem_U0,b0,assem_U)

## Adjoint cache
adjoint_K = assemble_matrix((u,v)->biform(v,u,φh),assem_adjoint,V0,U0)
Expand Down Expand Up @@ -761,26 +766,26 @@ end
get_state(m::RepeatingAffineFEStateMap) = FEFunction(get_trial_space(m),m.fwd_caches[4])
get_measure(m::RepeatingAffineFEStateMap) = m.biform.dΩ
get_spaces(m::RepeatingAffineFEStateMap) = m.spaces
get_assemblers(m::RepeatingAffineFEStateMap) = (m.fwd_caches[6],m.plb_caches[2],m.adj_caches[4])
get_assemblers(m::RepeatingAffineFEStateMap) = (m.fwd_caches[8],m.plb_caches[2],m.adj_caches[4])

function forward_solve!(φ_to_u::RepeatingAffineFEStateMap,φh)
biform, liforms = φ_to_u.biform, φ_to_u.liform
U0, V0 = φ_to_u.spaces_0
ns, K, b, x, uhd, assem_U, b0 = φ_to_u.fwd_caches
ns, K, b, x, uhd, assem_U0, b0, _ = φ_to_u.fwd_caches

a_fwd(u,v) = biform(u,v,φh)
assemble_matrix!(a_fwd,K,assem_U,U0,V0)
assemble_matrix!(a_fwd,K,assem_U0,U0,V0)
numerical_setup!(ns,K)

l0_fwd(v) = a_fwd(uhd,v)
assemble_vector!(l0_fwd,b0,assem_U,V0)
assemble_vector!(l0_fwd,b0,assem_U0,V0)
rmul!(b0,-1)

v = get_fe_basis(V0)
map(blocks(x),liforms) do xi, li
copy!(b,b0)
vecdata = collect_cell_vector(V0,li(v,φh))
assemble_vector_add!(b,assem_U,vecdata)
assemble_vector_add!(b,assem_U0,vecdata)
solve!(xi,ns,b)
end
return x
Expand All @@ -804,9 +809,9 @@ function update_adjoint_caches!(φ_to_u::RepeatingAffineFEStateMap,uh,φh)
return φ_to_u.adj_caches
end

function adjoint_solve!(φ_to_u::RepeatingAffineFEStateMap,du::AbstractVector)
function adjoint_solve!(φ_to_u::RepeatingAffineFEStateMap,du::AbstractBlockVector)
adjoint_ns, _, adjoint_x, _ = φ_to_u.adj_caches
map(blocks(adjoint_x),du) do xi, dui
map(blocks(adjoint_x),blocks(du)) do xi, dui
solve!(xi,adjoint_ns,dui)
end
return adjoint_x
Expand Down
Loading