Skip to content

Implement Face Recognition Code in PyTorch. Such as SphereFace with A-Softmax.

Notifications You must be signed in to change notification settings

zlinsmile/FaceRecognition_PyTorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Face Recognition

Models

  1. SphereFace with A-Softmax
    • Review paper: link

Environment

  • PyTorch 0.3.1
  • Python 2.7.13
  • Option1: TensorboardX (Use for visualization)

Training

In this project, there are two different parallel method have been implemented.

  1. Data Parallel
    A good choice for this way when your class number is less than 300000(Maybe?).
    Start training with this cmd:

    python training.py --input_paths=/your/data/path/10000_caffe_format.lst --working_root=/your/path/sphereface_pytorch --max_epoch=100 --img_size=112 --feature_dim=512 --label_num=10000 --process_num=15 --learning_rate=0.1 --model=SphereFaceNet --model_params='{"lamb_iter":0,"lamb_base":1000,"lamb_gamma":0.0001,"lamb_power":1,"lamb_min":10, "layer_type": "20layer"}' --try=0 --gpu_device=0,1,2,3 --batch_size=128 --parallel_mode='DataParallel'
    
  2. Model Parallel
    We can not fit full model into one GPU when class number is huge in last margin fc layer.
    So? The model parallel is a good idea!!!
    Start training with this cmd:

    python training.py --input_paths=/your/data/path/1000000_caffe_format.lst --working_root=/your/path/sphereface_pytorch --max_epoch=100 --img_size=112 --feature_dim=512 --label_num=1000000 --process_num=15 --learning_rate=0.1 --model=SphereFaceNet --model_params='{"lamb_iter":0,"lamb_base":1000,"lamb_gamma":0.00001,"lamb_power":1,"lamb_min":10, "layer_type": "20layer"}' --try=0 --gpu_device=0,1,2,3 --batch_size=128 --parallel_mode='ModelParallel'
    

Testing & Benchmark

TODO

References

Pytorch
sphereface
sphereface

About

Implement Face Recognition Code in PyTorch. Such as SphereFace with A-Softmax.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.8%
  • Shell 2.2%