Skip to content

Commit

Permalink
Merge pull request #546 from qwopqwop200/main
Browse files Browse the repository at this point in the history
support MangaOCR
  • Loading branch information
zyddnys authored Feb 22, 2024
2 parents a92a725 + 11d2191 commit fc46a20
Show file tree
Hide file tree
Showing 6 changed files with 304 additions and 3 deletions.
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -380,7 +380,8 @@ Colorizer: **mc2**
--detector {default,ctd,craft,none} Text detector used for creating a text mask from an
image, DO NOT use craft for manga, it's not designed
for it
--ocr {32px,48px,48px_ctc} Optical character recognition (OCR) model to use
--ocr {32px,48px,48px_ctc,mocr} Optical character recognition (OCR) model to use
--use-mocr-merge Use bbox merge when Manga OCR inference.
--inpainter {default,lama_large,lama_mpe,sd,none,original}
Inpainting model to use
--upscaler {waifu2x,esrgan,4xultrasharp} Upscaler to use. --upscale-ratio has to be set for it
Expand Down
3 changes: 2 additions & 1 deletion README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,8 @@ IND: Indonesian
--detector {default,ctd,craft,none} Text detector used for creating a text mask from an
image, DO NOT use craft for manga, it's not designed
for it
--ocr {32px,48px,48px_ctc} Optical character recognition (OCR) model to use
--ocr {32px,48px,48px_ctc,mocr} Optical character recognition (OCR) model to use
--use-mocr-merge Use bbox merge when Manga OCR inference.
--inpainter {default,lama_large,lama_mpe,sd,none,original}
Inpainting model to use
--upscaler {waifu2x,esrgan,4xultrasharp} Upscaler to use. --upscale-ratio has to be set for it
Expand Down
1 change: 1 addition & 0 deletions manga_translator/args.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,7 @@ def _format_action_invocation(self, action: argparse.Action) -> str:

parser.add_argument('--detector', default='default', type=str, choices=DETECTORS, help='Text detector used for creating a text mask from an image, DO NOT use craft for manga, it\'s not designed for it')
parser.add_argument('--ocr', default='48px', type=str, choices=OCRS, help='Optical character recognition (OCR) model to use')
parser.add_argument('--use-mocr-merge', action='store_true', help='Use bbox merge when Manga OCR inference.')
parser.add_argument('--inpainter', default='lama_large', type=str, choices=INPAINTERS, help='Inpainting model to use')
parser.add_argument('--upscaler', default='esrgan', type=str, choices=UPSCALERS, help='Upscaler to use. --upscale-ratio has to be set for it to take effect')
parser.add_argument('--upscale-ratio', default=None, type=float, help='Image upscale ratio applied before detection. Can improve text detection.')
Expand Down
2 changes: 2 additions & 0 deletions manga_translator/ocr/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,14 @@
from .model_32px import Model32pxOCR
from .model_48px import Model48pxOCR
from .model_48px_ctc import Model48pxCTCOCR
from .model_manga_ocr import ModelMangaOCR
from ..utils import Quadrilateral

OCRS = {
'32px': Model32pxOCR,
'48px': Model48pxOCR,
'48px_ctc': Model48pxCTCOCR,
'mocr': ModelMangaOCR,
}
ocr_cache = {}

Expand Down
295 changes: 295 additions & 0 deletions manga_translator/ocr/model_manga_ocr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,295 @@
import itertools
import math
from typing import Callable, List, Set, Optional, Tuple, Union
from collections import defaultdict, Counter
import os
import shutil
import cv2
from PIL import Image
import numpy as np
import einops
import networkx as nx
from shapely.geometry import Polygon

import torch
import torch.nn as nn
import torch.nn.functional as F

from manga_ocr import MangaOcr

from .xpos_relative_position import XPOS

from .common import OfflineOCR
from .model_48px import OCR
from ..textline_merge import split_text_region
from ..utils import TextBlock, Quadrilateral, quadrilateral_can_merge_region, chunks
from ..utils.generic import AvgMeter
from ..utils.bubble import is_ignore

async def merge_bboxes(bboxes: List[Quadrilateral], width: int, height: int):
# step 1: divide into multiple text region candidates
G = nx.Graph()
for i, box in enumerate(bboxes):
G.add_node(i, box=box)
for ((u, ubox), (v, vbox)) in itertools.combinations(enumerate(bboxes), 2):
# if quadrilateral_can_merge_region_coarse(ubox, vbox):
if quadrilateral_can_merge_region(ubox, vbox, aspect_ratio_tol=1.3, font_size_ratio_tol=2,
char_gap_tolerance=1, char_gap_tolerance2=3):
G.add_edge(u, v)

# step 2: postprocess - further split each region
region_indices: List[Set[int]] = []
for node_set in nx.algorithms.components.connected_components(G):
region_indices.extend(split_text_region(bboxes, node_set, width, height))

# step 3: return regions
merge_box = []
merge_idx = []
for node_set in region_indices:
# for node_set in nx.algorithms.components.connected_components(G):
nodes = list(node_set)
txtlns: List[Quadrilateral] = np.array(bboxes)[nodes]

# majority vote for direction
dirs = [box.direction for box in txtlns]
majority_dir_top_2 = Counter(dirs).most_common(2)
if len(majority_dir_top_2) == 1 :
majority_dir = majority_dir_top_2[0][0]
elif majority_dir_top_2[0][1] == majority_dir_top_2[1][1] : # if top 2 have the same counts
max_aspect_ratio = -100
for box in txtlns :
if box.aspect_ratio > max_aspect_ratio :
max_aspect_ratio = box.aspect_ratio
majority_dir = box.direction
if 1.0 / box.aspect_ratio > max_aspect_ratio :
max_aspect_ratio = 1.0 / box.aspect_ratio
majority_dir = box.direction
else :
majority_dir = majority_dir_top_2[0][0]

# sort textlines
if majority_dir == 'h':
nodes = sorted(nodes, key=lambda x: bboxes[x].centroid[1])
elif majority_dir == 'v':
nodes = sorted(nodes, key=lambda x: -bboxes[x].centroid[0])
txtlns = np.array(bboxes)[nodes]
# yield overall bbox and sorted indices
merge_box.append(txtlns)
merge_idx.append(nodes)

return_box = []
for bbox in merge_box:
if len(bbox) == 1:
return_box.append(bbox[0])
else:
prob = [q.prob for q in bbox]
prob = sum(prob)/len(prob)
base_box = bbox[0]
for box in bbox[1:]:
min_rect = np.array(Polygon([*base_box.pts, *box.pts]).minimum_rotated_rectangle.exterior.coords[:4])
base_box = Quadrilateral(min_rect, '', prob)
return_box.append(base_box)
return return_box, merge_idx

class ModelMangaOCR(OfflineOCR):
_MODEL_MAPPING = {
'model': {
'url': 'https://github.com/zyddnys/manga-image-translator/releases/download/beta-0.3/ocr_ar_48px.ckpt',
'hash': '29daa46d080818bb4ab239a518a88338cbccff8f901bef8c9db191a7cb97671d',
},
'dict': {
'url': 'https://github.com/zyddnys/manga-image-translator/releases/download/beta-0.3/alphabet-all-v7.txt',
'hash': 'f5722368146aa0fbcc9f4726866e4efc3203318ebb66c811d8cbbe915576538a',
},
}

def __init__(self, *args, **kwargs):
os.makedirs(self.model_dir, exist_ok=True)
if os.path.exists('ocr_ar_48px.ckpt'):
shutil.move('ocr_ar_48px.ckpt', self._get_file_path('ocr_ar_48px.ckpt'))
if os.path.exists('alphabet-all-v7.txt'):
shutil.move('alphabet-all-v7.txt', self._get_file_path('alphabet-all-v7.txt'))
super().__init__(*args, **kwargs)

async def _load(self, device: str):
with open(self._get_file_path('alphabet-all-v7.txt'), 'r', encoding = 'utf-8') as fp:
dictionary = [s[:-1] for s in fp.readlines()]

self.model = OCR(dictionary, 768)
self.mocr = MangaOcr()
sd = torch.load(self._get_file_path('ocr_ar_48px.ckpt'))
self.model.load_state_dict(sd)
self.model.eval()
self.device = device
if (device == 'cuda' or device == 'mps'):
self.use_gpu = True
else:
self.use_gpu = False
if self.use_gpu:
self.model = self.model.to(device)


async def _unload(self):
del self.model
del self.mocr

async def _infer(self, image: np.ndarray, textlines: List[Quadrilateral], args: dict, verbose: bool = False, ignore_bubble: int = 0) -> List[TextBlock]:
text_height = 48
max_chunk_size = 16

quadrilaterals = list(self._generate_text_direction(textlines))
region_imgs = [q.get_transformed_region(image, d, text_height) for q, d in quadrilaterals]

perm = range(len(region_imgs))
is_quadrilaterals = False
if len(quadrilaterals) > 0 and isinstance(quadrilaterals[0][0], Quadrilateral):
perm = sorted(range(len(region_imgs)), key = lambda x: region_imgs[x].shape[1])
is_quadrilaterals = True

texts = {}
if args['use_mocr_merge']:
merged_textlines, merged_idx = await merge_bboxes(textlines, image.shape[1], image.shape[0])
merged_quadrilaterals = list(self._generate_text_direction(merged_textlines))
else:
merged_idx = [[i] for i in range(len(region_imgs))]
merged_quadrilaterals = quadrilaterals
merged_region_imgs = []
for q, d in merged_quadrilaterals:
if d == 'h':
merged_text_height = q.aabb.w
merged_d = 'h'
elif d == 'v':
merged_text_height = q.aabb.h
merged_d = 'h'
merged_region_imgs.append(q.get_transformed_region(image, merged_d, merged_text_height))
for idx in range(len(merged_region_imgs)):
texts[idx] = self.mocr(Image.fromarray(merged_region_imgs[idx]))

ix = 0
out_regions = {}
for indices in chunks(perm, max_chunk_size):
N = len(indices)
widths = [region_imgs[i].shape[1] for i in indices]
max_width = 4 * (max(widths) + 7) // 4
region = np.zeros((N, text_height, max_width, 3), dtype = np.uint8)
idx_keys = []
for i, idx in enumerate(indices):
idx_keys.append(idx)
W = region_imgs[idx].shape[1]
tmp = region_imgs[idx]
region[i, :, : W, :]=tmp
if verbose:
os.makedirs('result/ocrs/', exist_ok=True)
if quadrilaterals[idx][1] == 'v':
cv2.imwrite(f'result/ocrs/{ix}.png', cv2.rotate(cv2.cvtColor(region[i, :, :, :], cv2.COLOR_RGB2BGR), cv2.ROTATE_90_CLOCKWISE))
else:
cv2.imwrite(f'result/ocrs/{ix}.png', cv2.cvtColor(region[i, :, :, :], cv2.COLOR_RGB2BGR))
ix += 1
image_tensor = (torch.from_numpy(region).float() - 127.5) / 127.5
image_tensor = einops.rearrange(image_tensor, 'N H W C -> N C H W')
if self.use_gpu:
image_tensor = image_tensor.to(self.device)
with torch.no_grad():
ret = self.model.infer_beam_batch(image_tensor, widths, beams_k = 5, max_seq_length = 255)
for i, (pred_chars_index, prob, fg_pred, bg_pred, fg_ind_pred, bg_ind_pred) in enumerate(ret):
if prob < 0.2:
continue
has_fg = (fg_ind_pred[:, 1] > fg_ind_pred[:, 0])
has_bg = (bg_ind_pred[:, 1] > bg_ind_pred[:, 0])
fr = AvgMeter()
fg = AvgMeter()
fb = AvgMeter()
br = AvgMeter()
bg = AvgMeter()
bb = AvgMeter()
for chid, c_fg, c_bg, h_fg, h_bg in zip(pred_chars_index, fg_pred, bg_pred, has_fg, has_bg) :
ch = self.model.dictionary[chid]
if ch == '<S>':
continue
if ch == '</S>':
break
if h_fg.item() :
fr(int(c_fg[0] * 255))
fg(int(c_fg[1] * 255))
fb(int(c_fg[2] * 255))
if h_bg.item() :
br(int(c_bg[0] * 255))
bg(int(c_bg[1] * 255))
bb(int(c_bg[2] * 255))
else :
br(int(c_fg[0] * 255))
bg(int(c_fg[1] * 255))
bb(int(c_fg[2] * 255))
fr = min(max(int(fr()), 0), 255)
fg = min(max(int(fg()), 0), 255)
fb = min(max(int(fb()), 0), 255)
br = min(max(int(br()), 0), 255)
bg = min(max(int(bg()), 0), 255)
bb = min(max(int(bb()), 0), 255)
cur_region = quadrilaterals[indices[i]][0]
if isinstance(cur_region, Quadrilateral):
cur_region.prob = prob
cur_region.fg_r = fr
cur_region.fg_g = fg
cur_region.fg_b = fb
cur_region.bg_r = br
cur_region.bg_g = bg
cur_region.bg_b = bb
else:
cur_region.update_font_colors(np.array([fr, fg, fb]), np.array([br, bg, bb]))

out_regions[idx_keys[i]] = cur_region

output_regions = []
for i, nodes in enumerate(merged_idx):
total_logprobs = 0
total_area = 0
fg_r = []
fg_g = []
fg_b = []
bg_r = []
bg_g = []
bg_b = []

for idx in nodes:
if idx not in out_regions:
continue

total_logprobs += np.log(out_regions[idx].prob) * out_regions[idx].area
total_area += out_regions[idx].area
fg_r.append(out_regions[idx].fg_r)
fg_g.append(out_regions[idx].fg_g)
fg_b.append(out_regions[idx].fg_b)
bg_r.append(out_regions[idx].bg_r)
bg_g.append(out_regions[idx].bg_g)
bg_b.append(out_regions[idx].bg_b)

total_logprobs /= total_area
prob = np.exp(total_logprobs)
fr = round(np.mean(fg_r))
fg = round(np.mean(fg_g))
fb = round(np.mean(fg_b))
br = round(np.mean(bg_r))
bg = round(np.mean(bg_g))
bb = round(np.mean(bg_b))

txt = texts[i]
self.logger.info(f'prob: {prob} {txt} fg: ({fr}, {fg}, {fb}) bg: ({br}, {bg}, {bb})')
cur_region = merged_quadrilaterals[i][0]
if isinstance(cur_region, Quadrilateral):
cur_region.text = txt
cur_region.prob = prob
cur_region.fg_r = fr
cur_region.fg_g = fg
cur_region.fg_b = fb
cur_region.bg_r = br
cur_region.bg_g = bg
cur_region.bg_b = bb
else:
cur_region.text.append(txt)
cur_region.update_font_colors(np.array([fr, fg, fb]), np.array([br, bg, bb]))
output_regions.append(cur_region)

if is_quadrilaterals:
return output_regions
return textlines
3 changes: 2 additions & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -43,4 +43,5 @@ aioshutil
aiofiles
arabic-reshaper
pyhyphen
langcodes
langcodes
manga-ocr

0 comments on commit fc46a20

Please sign in to comment.