forked from CoinCheung/BiSeNet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* typo * add ade20k and a bit small fixes * refine readme * refine
- Loading branch information
1 parent
1cb50c8
commit 184dc5a
Showing
16 changed files
with
233 additions
and
283 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
|
||
cfg = dict( | ||
model_type='bisenetv1', | ||
n_cats=150, | ||
num_aux_heads=2, | ||
lr_start=4e-2, | ||
weight_decay=1e-4, | ||
warmup_iters=1000, | ||
max_iter=40000, | ||
dataset='ADE20k', | ||
im_root='./datasets/ade20k', | ||
train_im_anns='./datasets/ade20k/train.txt', | ||
val_im_anns='./datasets/ade20k/val.txt', | ||
scales=[0.5, 2.], | ||
cropsize=[512, 512], | ||
eval_crop=[512, 512], | ||
eval_scales=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], | ||
eval_start_shortside=512, | ||
ims_per_gpu=8, | ||
eval_ims_per_gpu=1, | ||
use_fp16=True, | ||
use_sync_bn=True, | ||
respth='./res', | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
|
||
## bisenetv2 | ||
cfg = dict( | ||
model_type='bisenetv2', | ||
n_cats=150, | ||
num_aux_heads=4, | ||
lr_start=5e-3, | ||
weight_decay=1e-4, | ||
warmup_iters=1000, | ||
max_iter=160000, | ||
dataset='ADE20k', | ||
im_root='./datasets/ade20k', | ||
train_im_anns='./datasets/ade20k/train.txt', | ||
val_im_anns='./datasets/ade20k/val.txt', | ||
scales=[0.5, 2.], | ||
cropsize=[640, 640], | ||
eval_crop=[640, 640], | ||
eval_start_shortside=640, | ||
eval_scales=[0.5, 0.75, 1, 1.25, 1.5, 1.75], | ||
ims_per_gpu=2, | ||
eval_ims_per_gpu=1, | ||
use_fp16=True, | ||
use_sync_bn=True, | ||
respth='./res', | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
/data/zzy/.datasets/ADEChallengeData2016/annotations/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
/data/zzy/.datasets/ADEChallengeData2016/images/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
#!/usr/bin/python | ||
# -*- encoding: utf-8 -*- | ||
|
||
import os | ||
import os.path as osp | ||
import json | ||
|
||
import torch | ||
from torch.utils.data import Dataset, DataLoader | ||
import torch.distributed as dist | ||
import cv2 | ||
import numpy as np | ||
|
||
import lib.data.transform_cv2 as T | ||
from lib.data.base_dataset import BaseDataset | ||
|
||
''' | ||
proportion of each class label pixels: | ||
[0.1692778570779725, 0.11564757275917185, 0.0952101638485813, 0.06663867349694136, 0.05213595836428788, 0.04856869977177328, 0.04285300460652723, 0.024667459730413076, 0.021459432596108052, 0.01951911788079975, 0.019458422169334556, 0.017972951662770457, 0.017102797922112795, 0.016127154995430226, 0.012743318904507446, 0.011871312183986243, 0.01169223174996906, 0.010873715499098895, 0.01119535711707017, 0.01106824347921356, 0.010700814956159628, 0.00792769980935508, 0.007320940186670243, 0.007101978087028939, 0.006652130884336369, 0.0065129268341813954, 0.005905601374046595, 0.005655465856321791, 0.00485152244584825, 0.004812313401121428, 0.004808430157907591, 0.004852065319115992, 0.0035166264746248105, 0.0034049293812196796, 0.0031501695661207163, 0.003200865983720736, 0.0027563053654176255, 0.0026019635559833536, 0.002535207367187799, 0.0024709898687369503, 0.002511264681160722, 0.002349575022340693, 0.0022952289072600395, 0.0021756144527500325, 0.0020667410351909894, | ||
0.002019785482875027, 0.001971430263652598, 0.0019830032929254865, 0.0019170129596070547, 0.0019400873699042965, 0.0019177214046286212, 0.001992758707175458, 0.0019064211898405371, 0.001794991169874655, 0.0017086228805355563, 0.001816450049952539, 0.0018115561530790863, 0.0017526224833158293, 0.0016693853602227783, 0.001690968246884664, 0.001672815290479542, 0.0016435338913693607, 0.0015994805524026869, 0.001415586825791652, 0.0015309535955159497, 0.0015066783881302896, 0.0015584265652761034, 0.0014294452504793305, 0.0014381224963739522, 0.0013854752714941247, 0.001299217899155161, 0.0012526667460881378, 0.0013178209535318454, 0.0012941402888239277, 0.0010893388225083507, 0.0011300189527483507, 0.0010488809855522653, 0.0009206912461167046, 0.0009957668988478528, 0.0009413381127111981, 0.0009365154048026355, 0.0009059601825045681, 0.0008541199189880419, 0.0008971791385063005, 0.0008428502465623139, 0.0008056902958152122, 0.0008098830962054097, 0.0007822564960661871, 0.0007982742428082544, 0.0007502832355158758, 0.0007779780392762995, 0.0007712568824233966, 0.0007453305503359334, 0.0006837047894907241, 0.0007144561259049724, 0.0006892632697976981, | ||
0.0006652429648347085, 0.0006708271650257716, 0.0006737982709217282, 0.0006266153732017621, 0.0006591083131957701, 0.0006729084088606035, 0.0006615025588342957, 0.0005978453864296776, 0.0005662905332794616, 0.0005832571600309656, 0.000558171776296493, 0.0005270943484946844, 0.0005918616094679417, 0.0005653340750898915, 0.0005626451989934503, 0.0005906185582842337, 0.0005217418569022469, 0.0005282586325333688, 0.0005198277923139954, 0.0004861910064034809, 0.0005218504774841597, 0.0005172358250665335, 0.0005247616468645153, 0.0005357304885031275, 0.0004276964118043196, 0.0004607179872730913, 0.00041193838996318965, 0.00042133234798497776, 0.000374820234027733, 0.00041071531761801536, 0.0003664373889492048, 0.00043033958917813777, 0.00037797413481418125, 0.0004129435322190717, 0.00037504252731164754, 0.0003633328611545351, 0.00039741354470741193, 0.0003815260048785467, 0.00037395769934345317, 0.00037914990094397704, 0.000360210650939554, 0.0003641708241638368, 0.0003354311501122861, 0.0003386525655944687, 0.0003593692433029189, 0.00034422115014162057, 0.00032131529694189243, 0.00031263024322531515, 0.0003252564098949305, 0.00034751306566322646, 0.0002711341955909471, 0.00022987904222809388, 0.000242549759411221, 0.0002045743505533957] | ||
''' | ||
|
||
|
||
|
||
class ADE20k(BaseDataset): | ||
|
||
def __init__(self, dataroot, annpath, trans_func=None, mode='train'): | ||
super(ADE20k, self).__init__( | ||
dataroot, annpath, trans_func, mode) | ||
self.n_cats = 150 | ||
self.lb_ignore = 255 | ||
self.lb_map = np.arange(200) - 1 # label range from 1 to 149, 0 is ignored | ||
self.lb_map[0] = 255 | ||
|
||
self.to_tensor = T.ToTensor( | ||
mean=(0.49343230, 0.46819794, 0.43106043), # ade20k, rgb | ||
std=(0.25680755, 0.25506608, 0.27422913), | ||
) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.