-
Notifications
You must be signed in to change notification settings - Fork 17.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
AP_Volz_Protocol: use own thread for output #26691
Changes from all commits
b91f1d5
fa0ce9c
d380394
453b7bd
0bc0115
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -12,6 +12,22 @@ | |
|
||
#include <AP_SerialManager/AP_SerialManager.h> | ||
#include <SRV_Channel/SRV_Channel.h> | ||
#include <AP_BoardConfig/AP_BoardConfig.h> | ||
|
||
#define SET_EXTENDED_POSITION_CMD 0xDC | ||
|
||
// Extended Position Data Format defines -100 as 0x0080 decimal 128, we map this to a PWM of 1000 (if range is default) | ||
#define PWM_POSITION_MIN 1000 | ||
#define ANGLE_POSITION_MIN -100.0 | ||
#define EXTENDED_POSITION_MIN 0x0080 | ||
|
||
// Extended Position Data Format defines +100 as 0x0F80 decimal 3968, we map this to a PWM of 2000 (if range is default) | ||
#define PWM_POSITION_MAX 2000 | ||
#define ANGLE_POSITION_MAX 100.0 | ||
#define EXTENDED_POSITION_MAX 0x0F80 | ||
|
||
#define UART_BUFSIZE_RX 128 | ||
#define UART_BUFSIZE_TX 128 | ||
|
||
extern const AP_HAL::HAL& hal; | ||
|
||
|
@@ -23,6 +39,12 @@ const AP_Param::GroupInfo AP_Volz_Protocol::var_info[] = { | |
// @User: Standard | ||
AP_GROUPINFO("MASK", 1, AP_Volz_Protocol, bitmask, 0), | ||
|
||
// @Param: RANGE | ||
// @DisplayName: Range of travel | ||
// @Description: Range to map between 1000 and 2000 PWM. Default value of 200 gives full +-100 deg range of extended position command. This results in 0.2 deg movement per US change in PWM. If the full range is not needed it can be reduced to increase resolution. 40 deg range gives 0.04 deg movement per US change in PWM, this is higher resolution than possible with the VOLZ protocol so further reduction in range will not improve resolution. Reduced range does allow PWMs outside the 1000 to 2000 range, with 40 deg range 750 PWM results in a angle of -30 deg, 2250 would be +30 deg. This is still limited by the 200 deg maximum range of the actuator. | ||
// @Units: deg | ||
AP_GROUPINFO("RANGE", 2, AP_Volz_Protocol, range, 200), | ||
|
||
AP_GROUPEND | ||
}; | ||
|
||
|
@@ -35,89 +57,133 @@ AP_Volz_Protocol::AP_Volz_Protocol(void) | |
|
||
void AP_Volz_Protocol::init(void) | ||
{ | ||
AP_SerialManager &serial_manager = AP::serialmanager(); | ||
port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Volz,0); | ||
update_volz_bitmask(bitmask); | ||
} | ||
|
||
void AP_Volz_Protocol::update() | ||
{ | ||
if (!initialised) { | ||
initialised = true; | ||
init(); | ||
if (uint32_t(bitmask.get()) == 0) { | ||
// No servos enabled | ||
return; | ||
} | ||
|
||
|
||
const AP_SerialManager &serial_manager = AP::serialmanager(); | ||
port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Volz,0); | ||
if (port == nullptr) { | ||
// No port configured | ||
return; | ||
} | ||
|
||
if (last_used_bitmask != uint32_t(bitmask.get())) { | ||
update_volz_bitmask(bitmask); | ||
// Create thread to handle output | ||
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_Volz_Protocol::loop, void), | ||
"Volz", | ||
1024, AP_HAL::Scheduler::PRIORITY_RCOUT, 1)) { | ||
AP_BoardConfig::allocation_error("Volz thread"); | ||
} | ||
} | ||
|
||
uint32_t now = AP_HAL::micros(); | ||
if (now - last_volz_update_time < volz_time_frame_micros || | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This time check means that if you have enough servos it will only output every other update, which makes this PR have |
||
port->txspace() < VOLZ_DATA_FRAME_SIZE) { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This checks if there is enough space for one command but then sends more than one command. |
||
return; | ||
} | ||
void AP_Volz_Protocol::loop() | ||
{ | ||
const uint32_t baudrate = 115200; | ||
port->begin(baudrate, UART_BUFSIZE_RX, UART_BUFSIZE_TX); | ||
port->set_unbuffered_writes(true); | ||
port->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE); | ||
|
||
// Calculate the amount of time it should take to send a command | ||
// Multiply by 10 to convert from bit rate to byte rate (8 data bits + start and stop bits) | ||
// B/s to s/B, 1000000 converts to microseconds, multiply by number of bytes | ||
// 6 bytes at 11520 bytes per second takes 520 us | ||
const uint16_t send_us = (sizeof(CMD) * 1000000 * 10) / baudrate; | ||
|
||
last_volz_update_time = now; | ||
// receive packet is same length as sent, double to allow some time for the servo respond | ||
const uint16_t receive_us = send_us * 2; | ||
|
||
uint8_t i; | ||
uint16_t value; | ||
// This gives a total time of 1560ms, message rate of 641 Hz. | ||
// One servo at 641Hz, two at 320.5 each, three at 213.7 each ect... | ||
|
||
// loop for all channels | ||
for (i=0; i<NUM_SERVO_CHANNELS; i++) { | ||
// check if current channel is needed for Volz protocol | ||
if (last_used_bitmask & (1U<<i)) { | ||
while (port != nullptr) { | ||
|
||
SRV_Channel *c = SRV_Channels::srv_channel(i); | ||
if (c == nullptr) { | ||
// Wait the expected amount of time for the send and receive to complete so we don't step on the response | ||
hal.scheduler->delay_microseconds(send_us + receive_us); | ||
|
||
while (port->txspace() < sizeof(CMD)) { | ||
// Wait until there is enough space to transmit a full command | ||
hal.scheduler->delay_microseconds(100); | ||
} | ||
|
||
// loop for all channels | ||
for (uint8_t i=0; i<ARRAY_SIZE(servo_pwm); i++) { | ||
// Send each channels in turn | ||
const uint8_t index = (last_sent_index + 1 + i) % ARRAY_SIZE(servo_pwm); | ||
if ((uint32_t(bitmask.get()) & (1U<<index)) == 0) { | ||
// Not configured to send | ||
continue; | ||
} | ||
|
||
// check if current channel PWM is within range | ||
if (c->get_output_pwm() < VOLZ_PWM_POSITION_MIN) { | ||
value = 0; | ||
} else { | ||
value = c->get_output_pwm() - VOLZ_PWM_POSITION_MIN; | ||
last_sent_index = index; | ||
|
||
// Get PWM from saved array | ||
const uint16_t pwm = servo_pwm[index]; | ||
if (pwm == 0) { | ||
// Never use zero PWM, the check in update should ensure this never happens | ||
// If we were to use zero the range extrapolation would result in a -100 deg angle request | ||
continue; | ||
} | ||
|
||
// scale the PWM value to Volz value | ||
value = value * VOLZ_SCALE_VALUE / (VOLZ_PWM_POSITION_MAX - VOLZ_PWM_POSITION_MIN); | ||
value = value + VOLZ_EXTENDED_POSITION_MIN; | ||
// Map PWM to angle, this is a un-constrained interpolation | ||
// ratio = 0 at PWM_POSITION_MIN to 1 at PWM_POSITION_MAX | ||
const float ratio = (float(pwm) - PWM_POSITION_MIN) / (PWM_POSITION_MAX - PWM_POSITION_MIN); | ||
// Convert ratio to +-0.5 and multiply by stroke | ||
const float angle = (ratio - 0.5) * constrain_float(range, 0.0, 200.0); | ||
|
||
// make sure value stays in range | ||
if (value > VOLZ_EXTENDED_POSITION_MAX) { | ||
value = VOLZ_EXTENDED_POSITION_MAX; | ||
} | ||
// Map angle to command out of full range, add 0.5 so that float to int truncation rounds correctly | ||
const uint16_t value = linear_interpolate(EXTENDED_POSITION_MIN, EXTENDED_POSITION_MAX, angle, ANGLE_POSITION_MIN, ANGLE_POSITION_MAX) + 0.5; | ||
|
||
// prepare Volz protocol data. | ||
uint8_t data[VOLZ_DATA_FRAME_SIZE]; | ||
CMD cmd; | ||
cmd.ID = SET_EXTENDED_POSITION_CMD; | ||
cmd.actuator_id = index + 1; // send actuator id as 1 based index so ch1 will have id 1, ch2 will have id 2 .... | ||
cmd.arg1 = HIGHBYTE(value); | ||
cmd.arg2 = LOWBYTE(value); | ||
|
||
send_command(cmd); | ||
break; | ||
} | ||
} | ||
} | ||
|
||
data[0] = VOLZ_SET_EXTENDED_POSITION_CMD; | ||
data[1] = i + 1; // send actuator id as 1 based index so ch1 will have id 1, ch2 will have id 2 .... | ||
data[2] = HIGHBYTE(value); | ||
data[3] = LOWBYTE(value); | ||
// Called each time the servo outputs are sent | ||
void AP_Volz_Protocol::update() | ||
{ | ||
if (!initialised) { | ||
// One time setup | ||
initialised = true; | ||
init(); | ||
} | ||
|
||
if (port == nullptr) { | ||
// no point if we don't have a valid port | ||
return; | ||
} | ||
|
||
send_command(data); | ||
// take semaphore and loop for all channels | ||
for (uint8_t i=0; i<ARRAY_SIZE(servo_pwm); i++) { | ||
const SRV_Channel *c = SRV_Channels::srv_channel(i); | ||
if (c == nullptr) { | ||
continue; | ||
} | ||
// 0 PMW should stop outputting, for example in "safe" | ||
// There is no way to de-power, move to trim | ||
const uint16_t pwm = c->get_output_pwm(); | ||
servo_pwm[i] = (pwm == 0) ? c->get_trim() : pwm; | ||
} | ||
} | ||
|
||
// calculate CRC for volz serial protocol and send the data. | ||
void AP_Volz_Protocol::send_command(uint8_t data[VOLZ_DATA_FRAME_SIZE]) | ||
void AP_Volz_Protocol::send_command(CMD &cmd) | ||
{ | ||
uint8_t i,j; | ||
uint16_t crc = 0xFFFF; | ||
|
||
// calculate Volz CRC value according to protocol definition | ||
for(i=0; i<4; i++) { | ||
for(uint8_t i=0; i<4; i++) { | ||
// take input data into message that will be transmitted. | ||
crc = ((data[i] << 8) ^ crc); | ||
|
||
for(j=0; j<8; j++) { | ||
crc = (cmd.data[i] << 8) ^ crc; | ||
|
||
for(uint8_t j=0; j<8; j++) { | ||
if (crc & 0x8000) { | ||
crc = (crc << 1) ^ 0x8005; | ||
} else { | ||
|
@@ -127,37 +193,9 @@ void AP_Volz_Protocol::send_command(uint8_t data[VOLZ_DATA_FRAME_SIZE]) | |
} | ||
|
||
// add CRC result to the message | ||
data[4] = HIGHBYTE(crc); | ||
data[5] = LOWBYTE(crc); | ||
port->write(data, VOLZ_DATA_FRAME_SIZE); | ||
} | ||
|
||
void AP_Volz_Protocol::update_volz_bitmask(uint32_t new_bitmask) | ||
{ | ||
uint8_t count = 0; | ||
last_used_bitmask = new_bitmask; | ||
|
||
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) { | ||
if (new_bitmask & (1U<<i)) { | ||
count++; | ||
} | ||
} | ||
|
||
// have a safety margin of 20% to allow for not having full uart | ||
// utilisation. We really don't want to start filling the uart | ||
// buffer or we'll end up with servo lag | ||
const float safety = 1.3; | ||
|
||
// each channel take about 425.347us to transmit so total time will be ~ number of channels * 450us | ||
// rounded to 450 to make sure we don't go over the baud rate. | ||
Comment on lines
-151
to
-152
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I'm not sure where 425 is from, the correct time is 520, see: Double checked with the Saleae: The round up to 450 and the 1.3 safety factor puts the actual number used as 585. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. That's correct. Typical baudrate for Volz protocol is 115200bps, it makes 10bit*6bytes/115200 = 521us |
||
uint32_t channels_micros = count * 450 * safety; | ||
|
||
// limit the minimum to 2500 will result a max refresh frequency of 400hz. | ||
if (channels_micros < 2500) { | ||
channels_micros = 2500; | ||
} | ||
Comment on lines
-155
to
-158
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This limit means that with a 400Hz loop rate we miss updates sometime because both are aiming for the same time so a bit of jitter and it will skip a output. |
||
|
||
volz_time_frame_micros = channels_micros; | ||
cmd.crc1 = HIGHBYTE(crc); | ||
cmd.crc2 = LOWBYTE(crc); | ||
port->write(cmd.data, sizeof(cmd)); | ||
} | ||
|
||
#endif // AP_VOLZ_ENABLED |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
i'd like to know how much stack space margin we have with this thread
check a log for the STAK messages, in MAVExplorer do "dump STAK"