forked from acl-org/acl-anthology
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
KONVENS-2021 Ingestion (acl-org#1581)
* ingested KONVENS 2021 * adding url for konvens in venues.yaml * updated ingest.py to ingest the full-volume PDF * ingested KONVENS full-volume pdf * updated script to use f string to find the book.pdf path
- Loading branch information
Showing
3 changed files
with
274 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,267 @@ | ||
<?xml version='1.0' encoding='UTF-8'?> | ||
<collection id="2021.konvens"> | ||
<volume id="1" ingest-date="2021-09-06"> | ||
<meta> | ||
<booktitle>Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021)</booktitle> | ||
<editor><first>Kilian</first><last>Evang</last></editor> | ||
<editor><first>Laura</first><last>Kallmeyer</last></editor> | ||
<editor><first>Rainer</first><last>Osswald</last></editor> | ||
<editor><first>Jakub</first><last>Waszczuk</last></editor> | ||
<editor><first>Torsten</first><last>Zesch</last></editor> | ||
<publisher>KONVENS 2021 Organizers</publisher> | ||
<address>Düsseldorf, Germany</address> | ||
<month>6--9 September</month> | ||
<year>2021</year> | ||
<url hash="bf8a70a7">2021.konvens-1</url> | ||
</meta> | ||
<frontmatter> | ||
<url hash="08ee717a">2021.konvens-1.0</url> | ||
<bibkey>konvens-2021-natural</bibkey> | ||
</frontmatter> | ||
<paper id="1"> | ||
<title>The Impact of Word Embeddings on Neural Dependency Parsing</title> | ||
<author><first>Benedikt</first><last>Adelmann</last></author> | ||
<author><first>Wolfgang</first><last>Menzel</last></author> | ||
<author><first>Heike</first><last>Zinsmeister</last></author> | ||
<pages>1–13</pages> | ||
<url hash="f1d106ed">2021.konvens-1.1</url> | ||
<bibkey>adelmann-etal-2021-impact</bibkey> | ||
</paper> | ||
<paper id="2"> | ||
<title>Benchmarking down-scaled (not so large) pre-trained language models</title> | ||
<author><first>Matthias</first><last>Aßenmacher</last></author> | ||
<author><first>Patrick</first><last>Schulze</last></author> | ||
<author><first>Christian</first><last>Heumann</last></author> | ||
<pages>14–27</pages> | ||
<url hash="1e75c015">2021.konvens-1.2</url> | ||
<bibkey>assenmacher-etal-2021-benchmarking</bibkey> | ||
</paper> | ||
<paper id="3"> | ||
<title><fixed-case>A</fixed-case>rgue<fixed-case>BERT</fixed-case>: How To Improve <fixed-case>BERT</fixed-case> Embeddings for Measuring the Similarity of Arguments</title> | ||
<author><first>Maike</first><last>Behrendt</last></author> | ||
<author><first>Stefan</first><last>Harmeling</last></author> | ||
<pages>28–36</pages> | ||
<url hash="62033e0d">2021.konvens-1.3</url> | ||
<bibkey>behrendt-harmeling-2021-arguebert</bibkey> | ||
</paper> | ||
<paper id="4"> | ||
<title>How Hateful are Movies? A Study and Prediction on Movie Subtitles</title> | ||
<author><first>Niklas</first><last>von Boguszewski</last></author> | ||
<author><first>Sana</first><last>Moin</last></author> | ||
<author><first>Anirban</first><last>Bhowmick</last></author> | ||
<author><first>Seid Muhie</first><last>Yimam</last></author> | ||
<author><first>Chris</first><last>Biemann</last></author> | ||
<pages>37–48</pages> | ||
<url hash="b5f5fc74">2021.konvens-1.4</url> | ||
<bibkey>von-boguszewski-etal-2021-hateful</bibkey> | ||
</paper> | ||
<paper id="5"> | ||
<title>Emotion Recognition under Consideration of the Emotion Component Process Model</title> | ||
<author><first>Felix</first><last>Casel</last></author> | ||
<author><first>Amelie</first><last>Heindl</last></author> | ||
<author><first>Roman</first><last>Klinger</last></author> | ||
<pages>49–61</pages> | ||
<url hash="f8e39cb8">2021.konvens-1.5</url> | ||
<bibkey>casel-etal-2021-emotion</bibkey> | ||
</paper> | ||
<paper id="6"> | ||
<title>Identifikation von Vorkommensformen der Lemmata in Quellenzitaten frühneuhochdeutscher Lexikoneinträge</title> | ||
<author><first>Stefanie</first><last>Dipper</last></author> | ||
<author><first>Jan Christian</first><last>Schaffert</last></author> | ||
<pages>62–72</pages> | ||
<url hash="d29f27dd">2021.konvens-1.6</url> | ||
<bibkey>dipper-schaffert-2021-identifikation</bibkey> | ||
</paper> | ||
<paper id="7"> | ||
<title>Emotion Stimulus Detection in <fixed-case>G</fixed-case>erman News Headlines</title> | ||
<author><first>Bao Minh Doan</first><last>Dang</last></author> | ||
<author><first>Laura</first><last>Oberländer</last></author> | ||
<author><first>Roman</first><last>Klinger</last></author> | ||
<pages>73–85</pages> | ||
<url hash="6b9cd292">2021.konvens-1.7</url> | ||
<bibkey>dang-etal-2021-emotion</bibkey> | ||
</paper> | ||
<paper id="8"> | ||
<title>Lexicon-based Sentiment Analysis in <fixed-case>G</fixed-case>erman: Systematic Evaluation of Resources and Preprocessing Techniques</title> | ||
<author><first>Jakob</first><last>Fehle</last></author> | ||
<author><first>Thomas</first><last>Schmidt</last></author> | ||
<author><first>Christian</first><last>Wolff</last></author> | ||
<pages>86–103</pages> | ||
<url hash="b8412d7c">2021.konvens-1.8</url> | ||
<bibkey>fehle-etal-2021-lexicon</bibkey> | ||
</paper> | ||
<paper id="9"> | ||
<title>Definition Extraction from Mathematical Texts on Graph Theory in <fixed-case>G</fixed-case>erman and <fixed-case>E</fixed-case>nglish</title> | ||
<author><first>Theresa</first><last>Kruse</last></author> | ||
<author><first>Fritz</first><last>Kliche</last></author> | ||
<pages>104–113</pages> | ||
<url hash="992f9914">2021.konvens-1.9</url> | ||
<bibkey>kruse-kliche-2021-definition</bibkey> | ||
</paper> | ||
<paper id="10"> | ||
<title>Extraction and Normalization of Vague Time Expressions in <fixed-case>G</fixed-case>erman</title> | ||
<author><first>Ulrike</first><last>May</last></author> | ||
<author><first>Karolina</first><last>Zaczynska</last></author> | ||
<author><first>Julián</first><last>Moreno-Schneider</last></author> | ||
<author><first>Georg</first><last>Rehm</last></author> | ||
<pages>114–126</pages> | ||
<url hash="5cb3dbfc">2021.konvens-1.10</url> | ||
<bibkey>may-etal-2021-extraction</bibkey> | ||
</paper> | ||
<paper id="11"> | ||
<title>Automatic Phrase Recognition in Historical <fixed-case>G</fixed-case>erman</title> | ||
<author><first>Katrin</first><last>Ortmann</last></author> | ||
<pages>127–136</pages> | ||
<url hash="83178c7c">2021.konvens-1.11</url> | ||
<bibkey>ortmann-2021-automatic</bibkey> | ||
</paper> | ||
<paper id="12"> | ||
<title>Automatically Identifying Online Grooming Chats Using <fixed-case>CNN</fixed-case>-based Feature Extraction</title> | ||
<author><first>Svenja</first><last>Preuß</last></author> | ||
<author><first>Luna Pia</first><last>Bley</last></author> | ||
<author><first>Tabea</first><last>Bayha</last></author> | ||
<author><first>Vivien</first><last>Dehne</last></author> | ||
<author><first>Alessa</first><last>Jordan</last></author> | ||
<author><first>Sophie</first><last>Reimann</last></author> | ||
<author><first>Fina</first><last>Roberto</last></author> | ||
<author><first>Josephine Romy</first><last>Zahm</last></author> | ||
<author><first>Hanna</first><last>Siewerts</last></author> | ||
<author><first>Dirk</first><last>Labudde</last></author> | ||
<author><first>Michael</first><last>Spranger</last></author> | ||
<pages>137–146</pages> | ||
<url hash="1e67294f">2021.konvens-1.12</url> | ||
<bibkey>preuss-etal-2021-automatically</bibkey> | ||
</paper> | ||
<paper id="13"> | ||
<title>Who is we? Disambiguating the referents of first person plural pronouns in parliamentary debates</title> | ||
<author><first>Ines</first><last>Rehbein</last></author> | ||
<author><first>Josef</first><last>Ruppenhofer</last></author> | ||
<author><first>Julian</first><last>Bernauer</last></author> | ||
<pages>147–158</pages> | ||
<url hash="fd54aa3b">2021.konvens-1.13</url> | ||
<bibkey>rehbein-etal-2021-disambiguating</bibkey> | ||
</paper> | ||
<paper id="14"> | ||
<title>Examining the Effects of Preprocessing on the Detection of Offensive Language in <fixed-case>G</fixed-case>erman Tweets</title> | ||
<author><first>Sebastian</first><last>Reimann</last></author> | ||
<author><first>Daniel</first><last>Dakota</last></author> | ||
<pages>159–169</pages> | ||
<url hash="a369b8bf">2021.konvens-1.14</url> | ||
<bibkey>reimann-dakota-2021-examining</bibkey> | ||
</paper> | ||
<paper id="15"> | ||
<title>Neural End-to-end Coreference Resolution for <fixed-case>G</fixed-case>erman in Different Domains</title> | ||
<author><first>Fynn</first><last>Schröder</last></author> | ||
<author><first>Hans Ole</first><last>Hatzel</last></author> | ||
<author><first>Chris</first><last>Biemann</last></author> | ||
<pages>170–181</pages> | ||
<url hash="04b3285d">2021.konvens-1.15</url> | ||
<bibkey>schroder-etal-2021-neural</bibkey> | ||
</paper> | ||
<paper id="16"> | ||
<title>How to Estimate Continuous Sentiments From Texts Using Binary Training Data</title> | ||
<author><first>Sandra</first><last>Wankmüller</last></author> | ||
<author><first>Christian</first><last>Heumann</last></author> | ||
<pages>182–192</pages> | ||
<url hash="b5fd8f48">2021.konvens-1.16</url> | ||
<bibkey>wankmuller-heumann-2021-estimate</bibkey> | ||
</paper> | ||
<paper id="17"> | ||
<title>forum<fixed-case>BERT</fixed-case>: Topic Adaptation and Classification of Contextualized Forum Comments in <fixed-case>G</fixed-case>erman</title> | ||
<author><first>Ayush</first><last>Yadav</last></author> | ||
<author><first>Benjamin</first><last>Milde</last></author> | ||
<pages>193–202</pages> | ||
<url hash="88dab76c">2021.konvens-1.17</url> | ||
<bibkey>yadav-milde-2021-forumbert</bibkey> | ||
</paper> | ||
<paper id="18"> | ||
<title>Robustness of end-to-end Automatic Speech Recognition Models – A Case Study using Mozilla <fixed-case>D</fixed-case>eep<fixed-case>S</fixed-case>peech</title> | ||
<author><first>Aashish</first><last>Agarwal</last></author> | ||
<author><first>Torsten</first><last>Zesch</last></author> | ||
<pages>203–207</pages> | ||
<url hash="b238647f">2021.konvens-1.18</url> | ||
<bibkey>agarwal-zesch-2021-robustness</bibkey> | ||
</paper> | ||
<paper id="19"> | ||
<title>Effects of Layer Freezing on Transferring a Speech Recognition System to Under-resourced Languages</title> | ||
<author><first>Onno</first><last>Eberhard</last></author> | ||
<author><first>Torsten</first><last>Zesch</last></author> | ||
<pages>208–212</pages> | ||
<url hash="6e387d20">2021.konvens-1.19</url> | ||
<bibkey>eberhard-zesch-2021-effects</bibkey> | ||
</paper> | ||
<paper id="20"> | ||
<title><fixed-case>D</fixed-case>e<fixed-case>I</fixed-case>n<fixed-case>S</fixed-case>tance: Creating and Evaluating a <fixed-case>G</fixed-case>erman Corpus for Fine-Grained Inferred Stance Detection</title> | ||
<author><first>Anne</first><last>Göhring</last></author> | ||
<author><first>Manfred</first><last>Klenner</last></author> | ||
<author><first>Sophia</first><last>Conrad</last></author> | ||
<pages>213–217</pages> | ||
<url hash="b8a1e2ce">2021.konvens-1.20</url> | ||
<bibkey>gohring-etal-2021-deinstance</bibkey> | ||
</paper> | ||
<paper id="21"> | ||
<title>Combining text and vision in compound semantics: Towards a cognitively plausible multimodal model</title> | ||
<author><first>Abhijeet</first><last>Gupta</last></author> | ||
<author><first>Fritz</first><last>Günther</last></author> | ||
<author><first>Ingo</first><last>Plag</last></author> | ||
<author><first>Laura</first><last>Kallmeyer</last></author> | ||
<author><first>Stefan</first><last>Conrad</last></author> | ||
<pages>218–222</pages> | ||
<url hash="050ed5c7">2021.konvens-1.21</url> | ||
<bibkey>gupta-etal-2021-combining</bibkey> | ||
</paper> | ||
<paper id="22"> | ||
<title><fixed-case>M</fixed-case>ob<fixed-case>IE</fixed-case>: A <fixed-case>G</fixed-case>erman Dataset for Named Entity Recognition, Entity Linking and Relation Extraction in the Mobility Domain</title> | ||
<author><first>Leonhard</first><last>Hennig</last></author> | ||
<author><first>Phuc Tran</first><last>Truong</last></author> | ||
<author><first>Aleksandra</first><last>Gabryszak</last></author> | ||
<pages>223–227</pages> | ||
<url hash="59a4cca9">2021.konvens-1.22</url> | ||
<bibkey>hennig-etal-2021-mobie</bibkey> | ||
</paper> | ||
<paper id="23"> | ||
<title>Automatically evaluating the conceptual complexity of <fixed-case>G</fixed-case>erman texts</title> | ||
<author><first>Freya</first><last>Hewett</last></author> | ||
<author><first>Manfred</first><last>Stede</last></author> | ||
<pages>228–234</pages> | ||
<url hash="be4c9190">2021.konvens-1.23</url> | ||
<bibkey>hewett-stede-2021-automatically</bibkey> | ||
</paper> | ||
<paper id="24"> | ||
<title><fixed-case>W</fixed-case>ord<fixed-case>G</fixed-case>uess: Using Associations for Guessing, Learning and Exploring Related Words</title> | ||
<author><first>Cennet</first><last>Oguz</last></author> | ||
<author><first>André</first><last>Blessing</last></author> | ||
<author><first>Jonas</first><last>Kuhn</last></author> | ||
<author><first>Sabine Schulte Im</first><last>Walde</last></author> | ||
<pages>235–241</pages> | ||
<url hash="aa63f3eb">2021.konvens-1.24</url> | ||
<bibkey>oguz-etal-2021-wordguess</bibkey> | ||
</paper> | ||
<paper id="25"> | ||
<title>Towards a balanced annotated Low <fixed-case>S</fixed-case>axon dataset for diachronic investigation of dialectal variation</title> | ||
<author><first>Janine</first><last>Siewert</last></author> | ||
<author><first>Yves</first><last>Scherrer</last></author> | ||
<author><first>Jörg</first><last>Tiedemann</last></author> | ||
<pages>242–246</pages> | ||
<url hash="2fbca907">2021.konvens-1.25</url> | ||
<bibkey>siewert-etal-2021-towards</bibkey> | ||
</paper> | ||
<paper id="26"> | ||
<title><fixed-case>G</fixed-case>erman Abusive Language Dataset with Focus on <fixed-case>COVID</fixed-case>-19</title> | ||
<author><first>Maximilian</first><last>Wich</last></author> | ||
<author><first>Svenja</first><last>Räther</last></author> | ||
<author><first>Georg</first><last>Groh</last></author> | ||
<pages>247–252</pages> | ||
<url hash="ec5fb607">2021.konvens-1.26</url> | ||
<bibkey>wich-etal-2021-german</bibkey> | ||
</paper> | ||
<paper id="27"> | ||
<title>Comparing Contextual and Static Word Embeddings with Small Data</title> | ||
<author><first>Wei</first><last>Zhou</last></author> | ||
<author><first>Jelke</first><last>Bloem</last></author> | ||
<pages>253–259</pages> | ||
<url hash="593195b4">2021.konvens-1.27</url> | ||
<bibkey>zhou-bloem-2021-comparing</bibkey> | ||
</paper> | ||
</volume> | ||
</collection> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters