Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Model] support minimonkey model #257

Merged
merged 2 commits into from
Sep 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions lmms_eval/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
"longva": "LongVA",
"mantis": "Mantis",
"minicpm_v": "MiniCPM_V",
"minimonkey": "MiniMonkey",
"mplug_owl_video": "mplug_Owl",
"phi3v": "Phi3v",
"qwen_vl": "Qwen_VL",
Expand Down
331 changes: 331 additions & 0 deletions lmms_eval/models/minimonkey.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,331 @@
import warnings
from typing import List, Optional, Tuple, Union

import torch
from accelerate import Accelerator, DistributedType
from accelerate.state import AcceleratorState
from tqdm import tqdm
from transformers import AutoModel, AutoTokenizer

from lmms_eval import utils
from lmms_eval.api.instance import Instance
from lmms_eval.api.model import lmms
from lmms_eval.api.registry import register_model

warnings.filterwarnings("ignore")

from loguru import logger as eval_logger


@register_model("minimonkey")
class MiniMonkey(lmms):
"""
MiniMonkey Model
"""

def __init__(
self,
pretrained: str = "mx262/MiniMonkey",
device: Optional[str] = "cuda",
dtype: Optional[Union[str, torch.dtype]] = torch.bfloat16,
batch_size: Optional[Union[int, str]] = 1,
trust_remote_code: Optional[bool] = True,
**kwargs,
) -> None:
super().__init__()
# Do not use kwargs for now
assert kwargs == {}, f"Unexpected kwargs: {kwargs}"

accelerator = Accelerator()
if accelerator.num_processes > 1:
self._device = torch.device(f"cuda:{accelerator.local_process_index}")
else:
self._device = device
self.dtype = dtype
self._model = AutoModel.from_pretrained(pretrained, trust_remote_code=trust_remote_code, torch_dtype=dtype, device_map=self._device)
self._tokenizer = AutoTokenizer.from_pretrained(pretrained, trust_remote_code=trust_remote_code)
self._config = self._model.config
self.model.eval()
self.model.tie_weights()
self.batch_size_per_gpu = int(batch_size)
if accelerator.num_processes > 1:
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
# If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
# Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
# I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
if accelerator.distributed_type == DistributedType.DEEPSPEED:
kwargs = {
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
}
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED:
self._model = accelerator.prepare(self.model)
else:
self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
else:
# self.model.to(self._device)
self._rank = 0
self._word_size = 1

@property
def config(self):
# return the associated transformers.AutoConfig for the given pretrained model.
return self._config

@property
def tokenizer(self):
return self._tokenizer

@property
def model(self):
# returns the model, unwrapping it if using Accelerate
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(self._model)
else:
return self._model

@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.tokenizer.eos_token_id

@property
def max_length(self):
return self._max_length

@property
def batch_size(self):
return self.batch_size_per_gpu

@property
def device(self):
return self._device

@property
def rank(self):
return self._rank

@property
def world_size(self):
return self._world_size

def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]:
""" """
add_special_tokens = False if add_special_tokens is None else add_special_tokens
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
if left_truncate_len:
encoding = encoding[-left_truncate_len:]
return encoding

def tok_decode(self, tokens):
return self.tokenizer.decode(tokens)

def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
# TODO
assert False, "We have not implemented this function for MiniMonkey yet"

def flatten(self, input):
new_list = []
for i in input:
for j in i:
new_list.append(j)
return new_list

def generate_until(self, requests: List[Instance]) -> List[str]:
res = []

def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tok_encode(x[0])
return -len(toks), x[0]

# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1
pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding")
for chunk in chunks:
contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk)
task = task[0]
split = split[0]
visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id]
visuals = self.flatten(visuals)
# we assume all gen kwargs in the batch are the same
# this is safe to assume because the `grouper` object ensures it.
gen_kwargs = all_gen_kwargs[0]

# Set default values for until and max_new_tokens
until = [self.tok_decode(self.eot_token_id)]

# Update values from gen_kwargs if present
if "until" in gen_kwargs:
until = gen_kwargs.pop("until")
if isinstance(until, str):
until = [until]
elif not isinstance(until, list):
raise ValueError(f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {type(until)}")
assert self.batch_size_per_gpu == 1, "Do not support batch_size_per_gpu > 1 for now"
assert len(visuals) == 1, "MiniMonkey interface does not support bn_image > 1 for now"
context = contexts[0]
if "<image>" in context:
context = context.replace("<image>", "")

if "max_new_tokens" not in gen_kwargs:
gen_kwargs["max_new_tokens"] = 1024
if "temperature" not in gen_kwargs:
gen_kwargs["temperature"] = 0
if "top_p" not in gen_kwargs:
gen_kwargs["top_p"] = None
if "num_beams" not in gen_kwargs:
gen_kwargs["num_beams"] = 1

image, prompt = visuals[0], context
try:
pixel_values, target_aspect_ratio = load_image(image, min_num=4, max_num=12)
pixel_values2 = load_image2(image, min_num=3, max_num=7, target_aspect_ratio=target_aspect_ratio)
pixel_values = torch.cat([pixel_values2[:-1], pixel_values[:-1], pixel_values2[-1:]], 0).to(self._device).to(self.dtype)

response, history = self.model.chat(self.tokenizer, pixel_values, target_aspect_ratio, prompt, gen_kwargs, history=None, return_history=True)

context = [{"role": "user", "content": prompt}, {"role": "assistant", "content": response}]
except Exception as e:
eval_logger.error(f"Error {e} in generating")
cont = ""
res.append(response)
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), response)
pbar.update(1)
# reorder this group of results back to original unsorted form
res = re_ords.get_original(res)

pbar.close()
return res


import numpy as np
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD)])
return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height

# calculate the existing image aspect ratio
target_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)

# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = ((i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio


def dynamic_preprocess2(image, min_num=1, max_num=12, prior_aspect_ratio=None, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height

# calculate the existing image aspect ratio
target_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
new_target_ratios = []
for i in target_ratios:
if prior_aspect_ratio[0] % i[0] or prior_aspect_ratio[1] % i[1]:
new_target_ratios.append(i)
else:
continue
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, new_target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = ((i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images


def load_image(image, input_size=448, min_num=1, max_num=12):
image = image.convert("RGB")
transform = build_transform(input_size=input_size)
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values, target_aspect_ratio


def load_image2(image, input_size=448, min_num=1, max_num=12, target_aspect_ratio=None):
image = image.convert("RGB")
transform = build_transform(input_size=input_size)
images = dynamic_preprocess2(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num, prior_aspect_ratio=target_aspect_ratio)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
Loading