Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Force Float32 as type presented to Flux chains #276

Merged
merged 18 commits into from
Sep 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ julia = "1.9"
[extras]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MLJBase = "a7f614a8-145f-11e9-1d2a-a57a1082229d"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Expand All @@ -42,4 +43,4 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd"

[targets]
test = ["CUDA", "cuDNN", "LinearAlgebra", "MLJBase", "Random", "StableRNGs", "StatisticalMeasures", "StatsBase", "Test"]
test = ["CUDA", "cuDNN", "LinearAlgebra", "Logging", "MLJBase", "Random", "StableRNGs", "StatisticalMeasures", "StatsBase", "Test"]
15 changes: 11 additions & 4 deletions src/core.jl
Original file line number Diff line number Diff line change
Expand Up @@ -276,15 +276,22 @@ input `X` and target `y` in the form required by
by `model.batch_size`.)

"""
function collate(model, X, y)
function collate(model, X, y, verbosity)
row_batches = Base.Iterators.partition(1:nrows(y), model.batch_size)
Xmatrix = reformat(X)
Xmatrix = _f32(reformat(X), verbosity)
ymatrix = reformat(y)
return [_get(Xmatrix, b) for b in row_batches], [_get(ymatrix, b) for b in row_batches]
end
function collate(model::NeuralNetworkBinaryClassifier, X, y)
function collate(model::NeuralNetworkBinaryClassifier, X, y, verbosity)
row_batches = Base.Iterators.partition(1:nrows(y), model.batch_size)
Xmatrix = reformat(X)
Xmatrix = _f32(reformat(X), verbosity)
yvec = (y .== classes(y)[2])' # convert to boolean
return [_get(Xmatrix, b) for b in row_batches], [_get(yvec, b) for b in row_batches]
end

_f32(x::AbstractArray{Float32}, verbosity) = x
function _f32(x::AbstractArray, verbosity)
verbosity > 0 && @info "MLJFlux: converting input data to Float32"
return Float32.(x)
end

8 changes: 4 additions & 4 deletions src/encoders.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,11 @@ function ordinal_encoder_fit(X; featinds)
feat_col = Tables.getcolumn(Tables.columns(X), i)
feat_levels = levels(feat_col)
# Check if feat levels is already ordinal encoded in which case we skip
(Set([float(i) for i in 1:length(feat_levels)]) == Set(feat_levels)) && continue
(Set([Float32(i) for i in 1:length(feat_levels)]) == Set(feat_levels)) && continue
# Compute the dict using the given feature_mapper function
mapping_matrix[i] =
Dict{Any, AbstractFloat}(
value => float(index) for (index, value) in enumerate(feat_levels)
Dict{eltype(feat_levels), Float32}(
value => Float32(index) for (index, value) in enumerate(feat_levels)
)
end
return mapping_matrix
Expand Down Expand Up @@ -67,7 +67,7 @@ function ordinal_encoder_transform(X, mapping_matrix)
test_levels = levels(col)
check_unkown_levels(train_levels, test_levels)
level2scalar = mapping_matrix[ind]
new_col = recode(col, level2scalar...)
new_col = recode(unwrap.(col), level2scalar...)
push!(new_feats, new_col)
else
push!(new_feats, col)
Expand Down
3 changes: 1 addition & 2 deletions src/entity_embedding.jl
Original file line number Diff line number Diff line change
Expand Up @@ -36,15 +36,14 @@ julia> output = embedder(batch)
```
""" # 1. Define layer struct to hold parameters
struct EntityEmbedder{A1 <: AbstractVector, A2 <: AbstractVector, I <: Integer}

embedders::A1
modifiers::A2 # applied on the input before passing it to the embedder
numfeats::I
end

# 2. Define the forward pass (i.e., calling an instance of the layer)
(m::EntityEmbedder)(x) =
vcat([m.embedders[i](m.modifiers[i](x, i)) for i in 1:m.numfeats]...)
(vcat([m.embedders[i](m.modifiers[i](x, i)) for i in 1:m.numfeats]...))

# 3. Define the constructor which initializes the parameters and returns the instance
function EntityEmbedder(entityprops, numfeats; init = Flux.randn32)
Expand Down
24 changes: 12 additions & 12 deletions src/mlj_model_interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -66,35 +66,35 @@ function MLJModelInterface.fit(model::MLJFluxModel,
X,
y)
# GPU and rng related variables
move = Mover(model.acceleration)
move = MLJFlux.Mover(model.acceleration)
rng = true_rng(model)

# Get input properties
shape = MLJFlux.shape(model, X, y)
cat_inds = get_cat_inds(X)
cat_inds = MLJFlux.get_cat_inds(X)
pure_continuous_input = isempty(cat_inds)

# Decide whether to enable entity embeddings (e.g., ImageClassifier won't)
enable_entity_embs = is_embedding_enabled(model) && !pure_continuous_input
enable_entity_embs = MLJFlux.is_embedding_enabled(model) && !pure_continuous_input

# Prepare entity embeddings inputs and encode X if entity embeddings enabled
featnames = []
if enable_entity_embs
X = convert_to_table(X)
X = MLJFlux.convert_to_table(X)
featnames = Tables.schema(X).names
end

# entityprops is (index = cat_inds[i], levels = num_levels[i], newdim = newdims[i])
# entityprops is (index = cat_inds[i], levels = num_levels[i], newdim = newdims[i])
# for each categorical feature
default_embedding_dims = enable_entity_embs ? model.embedding_dims : Dict{Symbol, Real}()
entityprops, entityemb_output_dim =
prepare_entityembs(X, featnames, cat_inds, default_embedding_dims)
X, ordinal_mappings = ordinal_encoder_fit_transform(X; featinds = cat_inds)
MLJFlux.prepare_entityembs(X, featnames, cat_inds, default_embedding_dims)
X, ordinal_mappings = MLJFlux.ordinal_encoder_fit_transform(X; featinds = cat_inds)

## Construct model chain
chain =
(!enable_entity_embs) ? construct_model_chain(model, rng, shape, move) :
construct_model_chain_with_entityembs(
MLJFlux.construct_model_chain_with_entityembs(
model,
rng,
shape,
Expand All @@ -103,8 +103,8 @@ function MLJModelInterface.fit(model::MLJFluxModel,
entityemb_output_dim,
)

# Format data as needed by Flux and move to GPU
data = move.(collate(model, X, y))
# Format data as needed by Flux and move to GPU
data = move.(MLJFlux.collate(model, X, y, verbosity))

# Test chain works (as it may be custom)
x = data[1][1]
Expand Down Expand Up @@ -143,7 +143,7 @@ function MLJModelInterface.fit(model::MLJFluxModel,
featnames,
)

# Prepare fitresult
# Prepare fitresult
fitresult =
MLJFlux.fitresult(model, Flux.cpu(chain), y, ordinal_mappings, embedding_matrices)

Expand Down Expand Up @@ -216,7 +216,7 @@ function MLJModelInterface.update(model::MLJFluxModel,
chain = construct_model_chain(model, rng, shape, move)
end
# reset `optimiser_state`:
data = move.(collate(model, X, y))
data = move.(collate(model, X, y, verbosity))
regularized_optimiser, optimiser_state =
prepare_optimiser(data, model, chain)
epochs = model.epochs
Expand Down
14 changes: 7 additions & 7 deletions test/classifier.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,18 +4,17 @@ seed!(1234)
N = 300
Xm = MLJBase.table(randn(Float32, N, 5)); # purely numeric
X = (; Tables.columntable(Xm)...,
Column1 = repeat([1.0, 2.0, 3.0, 4.0, 5.0], Int(N / 5)),
Column1 = repeat(Float32[1.0, 2.0, 3.0, 4.0, 5.0], Int(N / 5)),
Column2 = categorical(repeat(['a', 'b', 'c', 'd', 'e'], Int(N / 5))),
Column3 = categorical(repeat(["b", "c", "d", "f", "f"], Int(N / 5)), ordered = true),
Column4 = repeat([1.0, 2.0, 3.0, 4.0, 5.0], Int(N / 5)),
Column5 = randn(N),
Column4 = repeat(Float32[1.0, 2.0, 3.0, 4.0, 5.0], Int(N / 5)),
Column5 = randn(Float32, N),
Column6 = categorical(
repeat(["group1", "group1", "group2", "group2", "group3"], Int(N / 5)),
),
)


ycont = 2 * X.x1 - X.x3 + 0.1 * rand(N)
ycont = 2 * X.x1 - X.x3 + 0.1 * rand(Float32, N)
m, M = minimum(ycont), maximum(ycont)
_, a, b, _ = range(m, stop = M, length = 4) |> collect
y = map(ycont) do η
Expand Down Expand Up @@ -111,7 +110,8 @@ end

# check different resources (CPU1, CUDALibs, etc)) give about the same loss:
reference = losses[1]
@test all(x -> abs(x - reference) / reference < 1e-4, losses[2:end])
println("losses for each resource: $losses")
@test all(x -> abs(x - reference) / reference < 0.03, losses[2:end])


# # NEURAL NETWORK BINARY CLASSIFIER
Expand All @@ -126,7 +126,7 @@ end
seed!(1234)
N = 300
X = MLJBase.table(rand(Float32, N, 4));
ycont = 2 * X.x1 - X.x3 + 0.1 * rand(N)
ycont = Float32.(2 * X.x1 - X.x3 + 0.1 * rand(N))
m, M = minimum(ycont), maximum(ycont)
_, a, _ = range(m, stop = M, length = 3) |> collect
y = map(ycont) do η
Expand Down
19 changes: 12 additions & 7 deletions test/core.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,23 +14,28 @@ rowvec(y::Vector) = reshape(y, 1, length(y))
end

@testset "collate" begin
# NeuralNetworRegressor:
Xmatrix = broadcast(x->round(x, sigdigits=2), rand(stable_rng, 10, 3))
Xmatrix = broadcast(x->round(x, sigdigits=2), rand(stable_rng, Float32, 10, 3))
Xmat_f64 = Float64.(Xmatrix)
# convert to a column table:
X = MLJBase.table(Xmatrix)
X_64 = MLJBase.table(Xmat_f64)

# NeuralNetworRegressor:
y = rand(stable_rng, Float32, 10)
model = MLJFlux.NeuralNetworkRegressor()
model.batch_size= 3
@test MLJFlux.collate(model, X, y) ==
@test MLJFlux.collate(model, X, y, 1) == MLJFlux.collate(model, X_64, y, 1) ==
([Xmatrix'[:,1:3], Xmatrix'[:,4:6], Xmatrix'[:,7:9], Xmatrix'[:,10:10]],
rowvec.([y[1:3], y[4:6], y[7:9], y[10:10]]))
@test_logs (:info,) MLJFlux.collate(model, X_64, y, 1)
@test_logs min_level=Logging.Info MLJFlux.collate(model, X, y, 1)
@test_logs min_level=Logging.Info MLJFlux.collate(model, X, y, 0)

# NeuralNetworClassifier:
y = categorical(['a', 'b', 'a', 'a', 'b', 'a', 'a', 'a', 'b', 'a'])
model = MLJFlux.NeuralNetworkClassifier()
model.batch_size = 3
data = MLJFlux.collate(model, X, y)
data = MLJFlux.collate(model, X, y, 1)

@test data == ([Xmatrix'[:,1:3], Xmatrix'[:,4:6],
Xmatrix'[:,7:9], Xmatrix'[:,10:10]],
Expand All @@ -42,13 +47,13 @@ end
y = MLJBase.table(ymatrix) # a rowaccess table
model = MLJFlux.NeuralNetworkRegressor()
model.batch_size= 3
@test MLJFlux.collate(model, X, y) ==
@test MLJFlux.collate(model, X, y, 1) ==
([Xmatrix'[:,1:3], Xmatrix'[:,4:6], Xmatrix'[:,7:9], Xmatrix'[:,10:10]],
rowvec.([ymatrix'[:,1:3], ymatrix'[:,4:6], ymatrix'[:,7:9],
ymatrix'[:,10:10]]))

y = Tables.columntable(y) # try a columnaccess table
@test MLJFlux.collate(model, X, y) ==
@test MLJFlux.collate(model, X, y, 1) ==
([Xmatrix'[:,1:3], Xmatrix'[:,4:6], Xmatrix'[:,7:9], Xmatrix'[:,10:10]],
rowvec.([ymatrix'[:,1:3], ymatrix'[:,4:6],
ymatrix'[:,7:9], ymatrix'[:,10:10]]))
Expand All @@ -58,7 +63,7 @@ end
y = categorical(['a', 'b', 'a', 'a', 'b', 'a', 'a', 'a', 'b', 'a'])
model = MLJFlux.ImageClassifier(batch_size=2)

data = MLJFlux.collate(model, Xmatrix, y)
data = MLJFlux.collate(model, Xmatrix, y, 1)
@test first.(data) == (Float32.(cat(Xmatrix[1], Xmatrix[2], dims=4)),
rowvec.([1 0;0 1]))

Expand Down
4 changes: 2 additions & 2 deletions test/encoders.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,8 @@
@test map[2] == Dict('a' => 1, 'b' => 2, 'c' => 3, 'd' => 4, 'e' => 5)
@test map[3] == Dict("b" => 1, "c" => 2, "d" => 3)
@test Xenc.Column1 == [1.0, 2.0, 3.0, 4.0, 5.0]
@test Xenc.Column2 == [1.0, 2.0, 3.0, 4.0, 5.0]
@test Xenc.Column3 == [1, 2, 3]
@test Xenc.Column2 == Float32.([1.0, 2.0, 3.0, 4.0, 5.0])
@test Xenc.Column3 == Float32.([1, 2, 3])
@test Xenc.Column4 == [1.0, 2.0, 3.0, 4.0, 5.0]

X = coerce(X, :Column1 => Multiclass)
Expand Down
15 changes: 8 additions & 7 deletions test/entity_embedding.jl
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
"""
See more functional tests in entity_embedding_utils.jl and mlj_model_interface.jl
"""

batch = [
batch = Float32.([
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1;
1 2 3 4 5 6 7 8 9 10;
0.9 0.1 0.4 0.5 0.3 0.7 0.8 0.9 1.0 1.1
1 1 2 2 1 1 2 2 1 1
]
1 2 3 4 5 6 7 8 9 10;
0.9 0.1 0.4 0.5 0.3 0.7 0.8 0.9 1.0 1.1;
1 1 2 2 1 1 2 2 1 1
])


entityprops = [
(index = 2, levels = 10, newdim = 2),
Expand Down Expand Up @@ -145,7 +145,8 @@ end
numfeats = 4
embedder = MLJFlux.EntityEmbedder(entityprops, 4)
output = embedder(batch)
@test output == batch
@test output ≈ batch
@test eltype(output) == Float32
end


Expand Down
Loading
Loading