-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create quantum_annealing_autonomous_systems.py
- Loading branch information
Showing
1 changed file
with
42 additions
and
0 deletions.
There are no files selected for viewing
42 changes: 42 additions & 0 deletions
42
evolution/machine_learning/quantum_annealing_autonomous_systems.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
# quantum_annealing_autonomous_systems.py | ||
import numpy as np | ||
from qiskit import QuantumCircuit, execute | ||
from qiskit.providers.aer import AerSimulator | ||
|
||
class QuantumAnnealingAutonomousSystems: | ||
def __init__(self, num_qubits, num_iterations): | ||
self.num_qubits = num_qubits | ||
self.num_iterations = num_iterations | ||
self.quantum_backend = AerSimulator() | ||
self.quantum_circuit = QuantumCircuit(num_qubits) | ||
|
||
def _generate_quantum_circuit(self): | ||
for i in range(self.num_qubits): | ||
self.quantum_circuit.ry(np.pi / 2, i) | ||
self.quantum_circuit.rz(np.pi / 2, i) | ||
return self.quantum_circuit | ||
|
||
def _evaluate_energy(self, X): | ||
# Implement energy function | ||
pass | ||
|
||
def _anneal(self, X): | ||
quantum_circuit = self._generate_quantum_circuit() | ||
for i in range(self.num_iterations): | ||
beta = i / self.num_iterations | ||
quantum_circuit.ry(beta * np.pi / 2, 0) | ||
quantum_circuit.rz(beta * np.pi / 2, 0) | ||
job = execute(quantum_circuit, self.quantum_backend, shots=1024) | ||
result = job.result() | ||
counts = result.get_counts(quantum_circuit) | ||
return counts | ||
|
||
def train(self, X): | ||
counts = self._anneal(X) | ||
best_solution = max(counts, key=lambda x: self._evaluate_energy(x)) | ||
return best_solution | ||
|
||
# Example usage: | ||
X = np.random.rand(100, 10) | ||
qaas = QuantumAnnealingAutonomousSystems(num_qubits=10, num_iterations=100) | ||
best_solution = qaas.train(X) |