Skip to content

Commit

Permalink
Create quantum_annealing_autonomous_systems.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Oct 12, 2024
1 parent c23ea96 commit 3ece790
Showing 1 changed file with 42 additions and 0 deletions.
42 changes: 42 additions & 0 deletions evolution/machine_learning/quantum_annealing_autonomous_systems.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# quantum_annealing_autonomous_systems.py
import numpy as np
from qiskit import QuantumCircuit, execute
from qiskit.providers.aer import AerSimulator

class QuantumAnnealingAutonomousSystems:
def __init__(self, num_qubits, num_iterations):
self.num_qubits = num_qubits
self.num_iterations = num_iterations
self.quantum_backend = AerSimulator()
self.quantum_circuit = QuantumCircuit(num_qubits)

def _generate_quantum_circuit(self):
for i in range(self.num_qubits):
self.quantum_circuit.ry(np.pi / 2, i)
self.quantum_circuit.rz(np.pi / 2, i)
return self.quantum_circuit

def _evaluate_energy(self, X):
# Implement energy function
pass

def _anneal(self, X):
quantum_circuit = self._generate_quantum_circuit()
for i in range(self.num_iterations):
beta = i / self.num_iterations
quantum_circuit.ry(beta * np.pi / 2, 0)
quantum_circuit.rz(beta * np.pi / 2, 0)
job = execute(quantum_circuit, self.quantum_backend, shots=1024)
result = job.result()
counts = result.get_counts(quantum_circuit)
return counts

def train(self, X):
counts = self._anneal(X)
best_solution = max(counts, key=lambda x: self._evaluate_energy(x))
return best_solution

# Example usage:
X = np.random.rand(100, 10)
qaas = QuantumAnnealingAutonomousSystems(num_qubits=10, num_iterations=100)
best_solution = qaas.train(X)

0 comments on commit 3ece790

Please sign in to comment.