Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add leaky_relu op #1459

Merged
merged 5 commits into from
Nov 27, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions thunder/executors/torchex.py
Original file line number Diff line number Diff line change
Expand Up @@ -836,6 +836,7 @@ def _erfcinv_impl(a: torch.Tensor) -> torch.Tensor:
celu = _register_torch_operation("celu", module=torch.nn.functional)
elu = _register_torch_operation("elu", module=torch.nn.functional)
gelu = _register_torch_operation("gelu", module=torch.nn.functional)
leaky_relu = _register_torch_operation("leaky_relu", module=torch.nn.functional)
relu = _register_torch_operation("relu", module=torch.nn.functional)
relu6 = _register_torch_operation("relu6", module=torch.nn.functional)
hardswish = _register_torch_operation("hardswish", module=torch.nn.functional)
Expand All @@ -850,6 +851,7 @@ def _elementwise_unary_with_inplace_checker(a: TensorProxy, /, inplace: bool = F
_register_elementwise_unary_implementation(ltorch.elu, elu, checker=_always_executable)
_register_elementwise_unary_implementation(ltorch.celu, celu, checker=_always_executable)
_register_elementwise_unary_implementation(ltorch.gelu, gelu, checker=_always_executable)
_register_elementwise_unary_implementation(ltorch.leaky_relu, leaky_relu, checker=_always_executable)
_register_elementwise_unary_implementation(ltorch.relu, relu, checker=_elementwise_unary_with_inplace_checker)
_register_elementwise_unary_implementation(ltorch.relu6, relu6, checker=_elementwise_unary_with_inplace_checker)
_register_elementwise_unary_implementation(ltorch.hardswish, hardswish, checker=_elementwise_unary_with_inplace_checker)
Expand Down
36 changes: 26 additions & 10 deletions thunder/tests/opinfos.py
Original file line number Diff line number Diff line change
Expand Up @@ -1633,20 +1633,24 @@ def _abs_torch(x: torch.Tensor | Number):
elementwise_unary_ops.append(reciprocal_opinfo)


def elementwise_unary_with_alpha_generator(op, device, dtype, requires_grad):
alphas = (None, -1.0, 0.5)
samples = elementwise_unary_generator(op, device, dtype, requires_grad)
for alpha, sample in itertools.product(alphas, samples):
if alpha is None:
yield sample
else:
yield SampleInput(*sample.args, alpha=alpha, **sample.kwargs)
def get_elementwise_unary_with_alpha_generator():
kwargs_list = [{}, {"alpha": -1.0}, {"alpha": 0.5}]
return get_elementwise_unary_with_kwargs_generator(kwargs_list)


def get_elementwise_unary_with_kwargs_generator(kwargs_list):
def gen(op, device, dtype, requires_grad):
samples = elementwise_unary_generator(op, device, dtype, requires_grad)
for kwargs, sample in itertools.product(kwargs_list, samples):
yield SampleInput(*sample.args, **kwargs, **sample.kwargs)

return gen


celu_opinfo = OpInfo(
ltorch.celu,
dtypes=(datatypes.floating,),
sample_input_generator=elementwise_unary_with_alpha_generator,
sample_input_generator=get_elementwise_unary_with_alpha_generator(),
torch_reference=_elementwise_unary_torch(torch.celu),
test_directives=(),
)
Expand All @@ -1656,7 +1660,7 @@ def elementwise_unary_with_alpha_generator(op, device, dtype, requires_grad):
elu_opinfo = OpInfo(
ltorch.elu,
dtypes=(datatypes.floating,),
sample_input_generator=elementwise_unary_with_alpha_generator,
sample_input_generator=get_elementwise_unary_with_alpha_generator(),
torch_reference=torch.nn.functional.elu,
# fdm.jvp, which is used in test_vjp_correctness, behaves badly on (-1e-6, 1e-6) for this function
singularity_fn=lambda x: x,
Expand All @@ -1665,6 +1669,18 @@ def elementwise_unary_with_alpha_generator(op, device, dtype, requires_grad):
elementwise_unary_ops.append(elu_opinfo)


leaky_relu_opinfo = OpInfo(
t-vi marked this conversation as resolved.
Show resolved Hide resolved
ltorch.leaky_relu,
dtypes=(datatypes.floating,),
sample_input_generator=get_elementwise_unary_with_kwargs_generator([{}, {"negative_slope": 0.5}]),
beverlylytle marked this conversation as resolved.
Show resolved Hide resolved
torch_reference=torch.nn.functional.leaky_relu,
# fdm.jvp, which is used in test_vjp_correctness, behaves badly on (-1e-6, 1e-6) for this function
beverlylytle marked this conversation as resolved.
Show resolved Hide resolved
singularity_fn=lambda x: x,
test_directives=(),
)
elementwise_unary_ops.append(leaky_relu_opinfo)


relu_opinfo = OpInfo(
ltorch.relu,
sample_input_generator=elementwise_unary_generator,
Expand Down
11 changes: 11 additions & 0 deletions thunder/torch/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -1801,6 +1801,17 @@ def gelu(a: TensorProxy, /, *, approximate: str = "none") -> TensorLike:
raise ValueError(f"gelu does not support the approximate={approximate} argument")


@torchsymbol(torch.nn.functional.leaky_relu, is_method=False)
def leaky_relu(a: TensorProxy, /, negative_slope=0.01, inplace: bool = False) -> TensorLike:
t-vi marked this conversation as resolved.
Show resolved Hide resolved
beverlylytle marked this conversation as resolved.
Show resolved Hide resolved
out = where(a > 0, a, a * negative_slope)
if inplace:
return prims.copy_(out, a)
return out


_inplace_to_out_of_place[leaky_relu] = leaky_relu, 2


# TODO Should this use clamp? -- Would that propagate NaNs properly?
@torchsymbol(torch.relu, torch.nn.functional.relu, id="torch.relu", is_method=True)
def relu(a: TensorLike, /, inplace: bool = False) -> TensorLike:
Expand Down
1 change: 0 additions & 1 deletion thunder/torch/default_torch_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -356,7 +356,6 @@
torch.nn.functional.instance_norm,
torch.nn.functional.kl_div,
torch.nn.functional.l1_loss,
torch.nn.functional.leaky_relu,
torch.nn.functional.local_response_norm,
torch.nn.functional.logsigmoid,
torch.nn.functional.lp_pool1d,
Expand Down
Loading