UNesT: Local Spatial Representation Learning with Hierarchical Transformer for Efficient Medical Segmentation
The official Pytorch implementation UNesT.
UNesT: Local Spatial Representation Learning with Hierarchical Transformer for Efficient Medical Segmentation. Medical Image Analysis, 2023
[arXiv
]
The proposed hierarchical transformer UNesT achieve SOTA performance on whole brain segmentation, multi-organ segmentation (BTCV) and kidney substructures segmentation.
Please refer to INSTALL.md.
- Whole brain segmentation README.md
- Renal Substructure segmentation README.md
- Multi-organ Segmentation README.md
For developing publicly available segmentation tools, we introduce the MONAI Bundle module that supports building Python-based workflows via structured configurations.
- Whole brain segmentation MONAI Boundle
- Renal Substructure segmentation MONAI Boundle
Model | #Params | FLOPs(G) | Colin DSC | CANDI DSC |
---|---|---|---|---|
nnUNet | 30.7M | 358.6 | 0.7168 | 0.4337 |
TransBTS | 33.0M | 111.9 | 0.6537 | 0.6043 |
nnFormer | 158.9M | 920.1 | 0.7113 | 0.6393 |
CoTr | 42.0M | 328.0 | 0.7209 | 0.6908 |
UNETR | 92.6M | 268.0 | 0.7320 | 0.6851 |
SwinUNETR | 62.2M | 334.9 | 0.6854 | 0.6537 |
SLANT27 | 19.9M × 27 | 2051.0 × 27 | 0.7264 | 0.6968 |
UNesT | 87.3M | 261.7G | 0.7444 | 0.7025 |
Model | #Params | FLOPs(G) | Mean DSC | Mean HD |
---|---|---|---|---|
nnUNet | 30.7M | 358.6 | 0.7168 | 0.8075 |
TransBTS | 33.0M | 111.9 | 0.6537 | 0.8073 |
nnFormer | 158.9M | 920.1 | 0.7113 | 0.8205 |
CoTr | 42.0M | 328.0 | 0.7209 | 0.8123 |
UNETR | 92.6M | 268.0 | 0.7320 | 0.8308 |
SwinUNETR | 62.2M | 334.9 | 0.6854 | 0.8411 |
UNesT | 87.3M | 261.7G | 0.7444 | 0.8564 |
This project is released under the MIT license. Please see the LICENSE file for more information.
If you find this repository useful, please consider citing the following papers:
@article{yu2023unest,
title={UNesT: local spatial representation learning with hierarchical transformer for efficient medical segmentation},
author={Yu, Xin and Yang, Qi and Zhou, Yinchi and Cai, Leon Y and Gao, Riqiang and Lee, Ho Hin and Li, Thomas and Bao, Shunxing and Xu, Zhoubing and Lasko, Thomas A and others},
journal={Medical Image Analysis},
pages={102939},
year={2023},
publisher={Elsevier}
}