Skip to content

MASILab/UNesT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The official Pytorch implementation UNesT.

UNesT: Local Spatial Representation Learning with Hierarchical Transformer for Efficient Medical Segmentation. Medical Image Analysis, 2023

[arXiv]

Model Overview


The proposed hierarchical transformer UNesT achieve SOTA performance on whole brain segmentation, multi-organ segmentation (BTCV) and kidney substructures segmentation.

Installation


Please refer to INSTALL.md.

Training and Inference


MONAI Boundle


For developing publicly available segmentation tools, we introduce the MONAI Bundle module that supports building Python-based workflows via structured configurations.

Results


Whole brain segmentation (5-fold ensembled)

Model #Params FLOPs(G) Colin DSC CANDI DSC
nnUNet 30.7M 358.6 0.7168 0.4337
TransBTS 33.0M 111.9 0.6537 0.6043
nnFormer 158.9M 920.1 0.7113 0.6393
CoTr 42.0M 328.0 0.7209 0.6908
UNETR 92.6M 268.0 0.7320 0.6851
SwinUNETR 62.2M 334.9 0.6854 0.6537
SLANT27 19.9M × 27 2051.0 × 27 0.7264 0.6968
UNesT 87.3M 261.7G 0.7444 0.7025

Renal Substructures segmentation (5-fold ensembled)

Model #Params FLOPs(G) Mean DSC Mean HD
nnUNet 30.7M 358.6 0.7168 0.8075
TransBTS 33.0M 111.9 0.6537 0.8073
nnFormer 158.9M 920.1 0.7113 0.8205
CoTr 42.0M 328.0 0.7209 0.8123
UNETR 92.6M 268.0 0.7320 0.8308
SwinUNETR 62.2M 334.9 0.6854 0.8411
UNesT 87.3M 261.7G 0.7444 0.8564

License


This project is released under the MIT license. Please see the LICENSE file for more information.

Citation


If you find this repository useful, please consider citing the following papers:

@article{yu2023unest,
  title={UNesT: local spatial representation learning with hierarchical transformer for efficient medical segmentation},
  author={Yu, Xin and Yang, Qi and Zhou, Yinchi and Cai, Leon Y and Gao, Riqiang and Lee, Ho Hin and Li, Thomas and Bao, Shunxing and Xu, Zhoubing and Lasko, Thomas A and others},
  journal={Medical Image Analysis},
  pages={102939},
  year={2023},
  publisher={Elsevier}

}

About

The official Pytorch implementation of UNesT

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published