Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Part G of transition to support modernize-use-default-member-init #5860

Merged
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion registration/include/pcl/registration/impl/ndt.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ namespace pcl {
template <typename PointSource, typename PointTarget, typename Scalar>
NormalDistributionsTransform<PointSource, PointTarget, Scalar>::
NormalDistributionsTransform()
: target_cells_(), trans_likelihood_()
: target_cells_()
{
reg_name_ = "NormalDistributionsTransform";

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -144,28 +144,28 @@ namespace pcl
protected:

/** \brief Maximum window size to be used in filtering ground returns. */
int max_window_size_;
int max_window_size_{33};

/** \brief Slope value to be used in computing the height threshold. */
float slope_;
float slope_{0.7f};

/** \brief Maximum height above the parameterized ground surface to be considered a ground return. */
float max_distance_;
float max_distance_{10.0f};

/** \brief Initial height above the parameterized ground surface to be considered a ground return. */
float initial_distance_;
float initial_distance_{0.15f};

/** \brief Cell size. */
float cell_size_;
float cell_size_{1.0f};

/** \brief Base to be used in computing progressive window sizes. */
float base_;
float base_{2.0f};

/** \brief Exponentially grow window sizes? */
bool exponential_;
bool exponential_{true};

/** \brief Number of threads to be used. */
unsigned int threads_;
unsigned int threads_{0};
};
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -99,9 +99,6 @@ namespace pcl
ConditionalEuclideanClustering (bool extract_removed_clusters = false) :
searcher_ (),
condition_function_ (),
cluster_tolerance_ (0.0f),
min_cluster_size_ (1),
max_cluster_size_ (std::numeric_limits<int>::max ()),
extract_removed_clusters_ (extract_removed_clusters),
small_clusters_ (new pcl::IndicesClusters),
large_clusters_ (new pcl::IndicesClusters)
Expand Down Expand Up @@ -237,28 +234,28 @@ namespace pcl

private:
/** \brief A pointer to the spatial search object */
SearcherPtr searcher_;
SearcherPtr searcher_{nullptr};

/** \brief The condition function that needs to hold for clustering */
std::function<bool (const PointT&, const PointT&, float)> condition_function_;

/** \brief The distance to scan for cluster candidates (default = 0.0) */
float cluster_tolerance_;
float cluster_tolerance_{0.0f};

/** \brief The minimum cluster size (default = 1) */
int min_cluster_size_;
int min_cluster_size_{1};

/** \brief The maximum cluster size (default = unlimited) */
int max_cluster_size_;
int max_cluster_size_{std::numeric_limits<int>::max ()};

/** \brief Set to true if you want to be able to extract the clusters that are too large or too small (default = false) */
bool extract_removed_clusters_;

/** \brief The resultant clusters that contain less than min_cluster_size points */
pcl::IndicesClustersPtr small_clusters_;
pcl::IndicesClustersPtr small_clusters_{nullptr};

/** \brief The resultant clusters that contain more than max_cluster_size points */
pcl::IndicesClustersPtr large_clusters_;
pcl::IndicesClustersPtr large_clusters_{nullptr};

public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
Expand Down
14 changes: 7 additions & 7 deletions segmentation/include/pcl/segmentation/cpc_segmentation.h
Original file line number Diff line number Diff line change
Expand Up @@ -138,25 +138,25 @@ namespace pcl
/// *** Parameters *** ///

/** \brief Maximum number of cuts */
std::uint32_t max_cuts_;
std::uint32_t max_cuts_{20};

/** \brief Minimum segment size for cutting */
std::uint32_t min_segment_size_for_cutting_;
std::uint32_t min_segment_size_for_cutting_{400};

/** \brief Cut_score threshold */
float min_cut_score_;
float min_cut_score_{0.16};

/** \brief Use local constrains for cutting */
bool use_local_constrains_;
bool use_local_constrains_{true};

/** \brief Use directed weights for the cutting */
bool use_directed_weights_;
bool use_directed_weights_{true};

/** \brief Use clean cutting */
bool use_clean_cutting_;
bool use_clean_cutting_{false};

/** \brief Iterations for RANSAC */
std::uint32_t ransac_itrs_;
std::uint32_t ransac_itrs_{10000};


/******************************************* Directional weighted RANSAC declarations ******************************************************************/
Expand Down
14 changes: 5 additions & 9 deletions segmentation/include/pcl/segmentation/extract_clusters.h
Original file line number Diff line number Diff line change
Expand Up @@ -337,11 +337,7 @@ namespace pcl

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Empty constructor. */
EuclideanClusterExtraction () : tree_ (),
cluster_tolerance_ (0),
min_pts_per_cluster_ (1),
max_pts_per_cluster_ (std::numeric_limits<pcl::uindex_t>::max ())
{};
EuclideanClusterExtraction () : tree_ () {};
gnawme marked this conversation as resolved.
Show resolved Hide resolved

/** \brief Provide a pointer to the search object.
* \param[in] tree a pointer to the spatial search object.
Expand Down Expand Up @@ -423,16 +419,16 @@ namespace pcl
using BasePCLBase::deinitCompute;

/** \brief A pointer to the spatial search object. */
KdTreePtr tree_;
KdTreePtr tree_{nullptr};

/** \brief The spatial cluster tolerance as a measure in the L2 Euclidean space. */
double cluster_tolerance_;
double cluster_tolerance_{0.0};

/** \brief The minimum number of points that a cluster needs to contain in order to be considered valid (default = 1). */
pcl::uindex_t min_pts_per_cluster_;
pcl::uindex_t min_pts_per_cluster_{1};

/** \brief The maximum number of points that a cluster needs to contain in order to be considered valid (default = MAXINT). */
pcl::uindex_t max_pts_per_cluster_;
pcl::uindex_t max_pts_per_cluster_{std::numeric_limits<pcl::uindex_t>::max()};

/** \brief Class getName method. */
virtual std::string getClassName () const { return ("EuclideanClusterExtraction"); }
Expand Down
17 changes: 6 additions & 11 deletions segmentation/include/pcl/segmentation/extract_labeled_clusters.h
Original file line number Diff line number Diff line change
Expand Up @@ -115,12 +115,7 @@ class LabeledEuclideanClusterExtraction : public PCLBase<PointT> {

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Empty constructor. */
LabeledEuclideanClusterExtraction()
: tree_()
, cluster_tolerance_(0)
, min_pts_per_cluster_(1)
, max_pts_per_cluster_(std::numeric_limits<int>::max())
, max_label_(std::numeric_limits<int>::max()){};
LabeledEuclideanClusterExtraction() = default;

/** \brief Provide a pointer to the search object.
* \param[in] tree a pointer to the spatial search object.
Expand Down Expand Up @@ -222,22 +217,22 @@ class LabeledEuclideanClusterExtraction : public PCLBase<PointT> {
using BasePCLBase::input_;

/** \brief A pointer to the spatial search object. */
KdTreePtr tree_;
KdTreePtr tree_{nullptr};

/** \brief The spatial cluster tolerance as a measure in the L2 Euclidean space. */
double cluster_tolerance_;
double cluster_tolerance_{0};

/** \brief The minimum number of points that a cluster needs to contain in order to be
* considered valid (default = 1). */
int min_pts_per_cluster_;
int min_pts_per_cluster_{1};

/** \brief The maximum number of points that a cluster needs to contain in order to be
* considered valid (default = MAXINT). */
int max_pts_per_cluster_;
int max_pts_per_cluster_{std::numeric_limits<int>::max()};

/** \brief The maximum number of labels we can find in this pointcloud (default =
* MAXINT)*/
unsigned int max_label_;
unsigned int max_label_{0};
gnawme marked this conversation as resolved.
Show resolved Hide resolved

/** \brief Class getName method. */
virtual std::string
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -115,11 +115,7 @@ namespace pcl
using PointIndicesConstPtr = PointIndices::ConstPtr;

/** \brief Empty constructor. */
ExtractPolygonalPrismData () : planar_hull_ (), min_pts_hull_ (3),
height_limit_min_ (0),
height_limit_max_(std::numeric_limits<float>::max()),
vpx_ (0), vpy_ (0), vpz_ (0)
{};
ExtractPolygonalPrismData () = default;

/** \brief Provide a pointer to the input planar hull dataset.
* \note Please see the example in the class description for how to obtain this.
Expand Down Expand Up @@ -187,23 +183,23 @@ namespace pcl

protected:
/** \brief A pointer to the input planar hull dataset. */
PointCloudConstPtr planar_hull_;
PointCloudConstPtr planar_hull_{nullptr};

/** \brief The minimum number of points needed on the convex hull. */
int min_pts_hull_;
int min_pts_hull_{3};

/** \brief The minimum allowed height (distance to the model) a point
* will be considered from.
*/
double height_limit_min_;
double height_limit_min_{0.0};

/** \brief The maximum allowed height (distance to the model) a point
* will be considered from.
*/
double height_limit_max_;
double height_limit_max_{std::numeric_limits<float>::max()};

/** \brief Values describing the data acquisition viewpoint. Default: 0,0,0. */
float vpx_, vpy_, vpz_;
float vpx_{0}, vpy_{0}, vpz_{0};

/** \brief Class getName method. */
virtual std::string
Expand Down
29 changes: 12 additions & 17 deletions segmentation/include/pcl/segmentation/grabcut_segmentation.h
Original file line number Diff line number Diff line change
Expand Up @@ -157,7 +157,7 @@ namespace pcl
/// nodes and their outgoing internal edges
std::vector<capacitated_edge> nodes_;
/// current flow value (includes constant)
double flow_value_;
double flow_value_{0.0};
/// identifies which side of the cut a node falls
std::vector<unsigned char> cut_;

Expand Down Expand Up @@ -259,9 +259,8 @@ namespace pcl
GaussianFitter (float epsilon = 0.0001)
: sum_ (Eigen::Vector3f::Zero ())
gnawme marked this conversation as resolved.
Show resolved Hide resolved
, accumulator_ (Eigen::Matrix3f::Zero ())
, count_ (0)
, epsilon_ (epsilon)
{ }
{}

/// Add a color sample
void
Expand All @@ -281,13 +280,13 @@ namespace pcl

private:
/// sum of r,g, and b
Eigen::Vector3f sum_;
Eigen::Vector3f sum_{};
/// matrix of products (i.e. r*r, r*g, r*b), some values are duplicated.
Eigen::Matrix3f accumulator_;
Eigen::Matrix3f accumulator_{};
/// count of color samples added to the gaussian
std::uint32_t count_;
std::uint32_t count_{0};
/// small value to add to covariance matrix diagonal to avoid singular values
float epsilon_;
float epsilon_{0.0f};
PCL_MAKE_ALIGNED_OPERATOR_NEW
};

Expand Down Expand Up @@ -329,12 +328,8 @@ namespace pcl
using PCLBase<PointT>::fake_indices_;

/// Constructor
GrabCut (std::uint32_t K = 5, float lambda = 50.f)
: K_ (K)
, lambda_ (lambda)
, nb_neighbours_ (9)
, initialized_ (false)
{}
GrabCut(std::uint32_t K = 5, float lambda = 50.f) : K_(K), lambda_(lambda) {}

/// Destructor
~GrabCut () override = default;
// /// Set input cloud
Expand Down Expand Up @@ -399,9 +394,9 @@ namespace pcl
// Storage for N-link weights, each pixel stores links to nb_neighbours
struct NLinks
{
NLinks () : nb_links (0), indices (0), dists (0), weights (0) {}
NLinks () : indices (0), dists (0), weights (0) {}
gnawme marked this conversation as resolved.
Show resolved Hide resolved

int nb_links;
int nb_links{0};
Indices indices;
std::vector<float> dists;
std::vector<float> weights;
Expand Down Expand Up @@ -460,9 +455,9 @@ namespace pcl
/// Pointer to the spatial search object.
KdTreePtr tree_;
/// Number of neighbours
int nb_neighbours_;
int nb_neighbours_{9};
/// is segmentation initialized
bool initialized_;
bool initialized_{false};
/// Precomputed N-link weights
std::vector<NLinks> n_links_;
/// Converted input
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -49,17 +49,7 @@

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT>
pcl::ApproximateProgressiveMorphologicalFilter<PointT>::ApproximateProgressiveMorphologicalFilter () :
max_window_size_ (33),
slope_ (0.7f),
max_distance_ (10.0f),
initial_distance_ (0.15f),
cell_size_ (1.0f),
base_ (2.0f),
exponential_ (true),
threads_ (0)
{
}
pcl::ApproximateProgressiveMorphologicalFilter<PointT>::ApproximateProgressiveMorphologicalFilter () = default;

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT>
Expand Down
10 changes: 1 addition & 9 deletions segmentation/include/pcl/segmentation/impl/cpc_segmentation.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -42,15 +42,7 @@
#include <pcl/segmentation/cpc_segmentation.h>

template <typename PointT>
pcl::CPCSegmentation<PointT>::CPCSegmentation () :
max_cuts_ (20),
min_segment_size_for_cutting_ (400),
min_cut_score_ (0.16),
use_local_constrains_ (true),
use_directed_weights_ (true),
ransac_itrs_ (10000)
{
}
pcl::CPCSegmentation<PointT>::CPCSegmentation () = default;

template <typename PointT>
pcl::CPCSegmentation<PointT>::~CPCSegmentation () = default;
Expand Down
14 changes: 1 addition & 13 deletions segmentation/include/pcl/segmentation/impl/lccp_segmentation.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -51,19 +51,7 @@


template <typename PointT>
pcl::LCCPSegmentation<PointT>::LCCPSegmentation () :
concavity_tolerance_threshold_ (10),
grouping_data_valid_ (false),
supervoxels_set_ (false),
use_smoothness_check_ (false),
smoothness_threshold_ (0.1),
use_sanity_check_ (false),
seed_resolution_ (0),
voxel_resolution_ (0),
k_factor_ (0),
min_segment_size_ (0)
{
}
pcl::LCCPSegmentation<PointT>::LCCPSegmentation () = default;

template <typename PointT>
pcl::LCCPSegmentation<PointT>::~LCCPSegmentation () = default;
Expand Down
Loading