Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

LD-SDA Documentation #3539

Merged
merged 16 commits into from
Apr 2, 2025
Merged
Changes from all commits
Commits
Show all changes
16 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 86 additions & 22 deletions doc/OnlineDocs/explanation/solvers/gdpopt.rst
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,12 @@ The main advantage of these techniques is their ability to solve subproblems
in a reduced space, including nonlinear constraints only for ``True`` logical blocks.
As a result, GDPopt is most effective for nonlinear GDP models.

Three algorithms are available in GDPopt:
Four algorithms are available in GDPopt:

1. Logic-based outer approximation (LOA) [`Turkay & Grossmann, 1996`_]
2. Global logic-based outer approximation (GLOA) [`Lee & Grossmann, 2001`_]
3. Logic-based branch-and-bound (LBB) [`Lee & Grossmann, 2001`_]
4. Logic-based discrete steepest descent algorithm (LD-SDA) [`Ovalle et al., 2025`_]

Usage and implementation details for GDPopt can be found in the PSE 2018 paper
(`Chen et al., 2018`_), or via its
Expand All @@ -28,6 +29,7 @@ Credit for prototyping and development can be found in the ``GDPopt`` class docu
.. _Lee & Grossmann, 2001: https://doi.org/10.1016/S0098-1354(01)00732-3
.. _Lee & Grossmann, 2000: https://doi.org/10.1016/S0098-1354(00)00581-0
.. _Chen et al., 2018: https://doi.org/10.1016/B978-0-444-64241-7.50143-9
.. _Ovalle et al., 2025: https://doi.org/10.1016/j.compchemeng.2024.108993

GDPopt can be used to solve a Pyomo.GDP concrete model in two ways.
The simplest is to instantiate the generic GDPopt solver and specify the desired algorithm as an argument to the ``solve`` method:
Expand Down Expand Up @@ -63,27 +65,27 @@ An example that includes the modeling approach may be found below.
:skipif: not glpk_available

Required imports
>>> from pyomo.environ import *
>>> from pyomo.gdp import *
>>> import pyomo.environ as pyo
>>> from pyomo.gdp import Disjunct, Disjunction

Create a simple model
>>> model = ConcreteModel(name='LOA example')
>>> model = pyo.ConcreteModel(name='LOA example')

>>> model.x = Var(bounds=(-1.2, 2))
>>> model.y = Var(bounds=(-10,10))
>>> model.c = Constraint(expr= model.x + model.y == 1)
>>> model.x = pyo.Var(bounds=(-1.2, 2))
>>> model.y = pyo.Var(bounds=(-10,10))
>>> model.c = pyo.Constraint(expr= model.x + model.y == 1)

>>> model.fix_x = Disjunct()
>>> model.fix_x.c = Constraint(expr=model.x == 0)
>>> model.fix_x.c = pyo.Constraint(expr=model.x == 0)

>>> model.fix_y = Disjunct()
>>> model.fix_y.c = Constraint(expr=model.y == 0)
>>> model.fix_y.c = pyo.Constraint(expr=model.y == 0)

>>> model.d = Disjunction(expr=[model.fix_x, model.fix_y])
>>> model.objective = Objective(expr=model.x + 0.1*model.y, sense=minimize)
>>> model.objective = pyo.Objective(expr=model.x + 0.1*model.y, sense=pyo.minimize)

Solve the model using GDPopt
>>> results = SolverFactory('gdpopt.loa').solve(
>>> results = pyo.SolverFactory('gdpopt.loa').solve(
... model, mip_solver='glpk') # doctest: +IGNORE_RESULT

Display the final solution
Expand Down Expand Up @@ -158,25 +160,25 @@ To use the GDPopt-LBB solver, define your Pyomo GDP model as usual:
:skipif: not baron_available

Required imports
>>> from pyomo.environ import *
>>> import pyomo.environ as pyo
>>> from pyomo.gdp import Disjunct, Disjunction

Create a simple model
>>> m = ConcreteModel()
>>> m.x1 = Var(bounds = (0,8))
>>> m.x2 = Var(bounds = (0,8))
>>> m.obj = Objective(expr=m.x1 + m.x2, sense=minimize)
>>> m = pyo.ConcreteModel()
>>> m.x1 = pyo.Var(bounds = (0,8))
>>> m.x2 = pyo.Var(bounds = (0,8))
>>> m.obj = pyo.Objective(expr=m.x1 + m.x2, sense=pyo.minimize)
>>> m.y1 = Disjunct()
>>> m.y2 = Disjunct()
>>> m.y1.c1 = Constraint(expr=m.x1 >= 2)
>>> m.y1.c2 = Constraint(expr=m.x2 >= 2)
>>> m.y2.c1 = Constraint(expr=m.x1 >= 3)
>>> m.y2.c2 = Constraint(expr=m.x2 >= 3)
>>> m.y1.c1 = pyo.Constraint(expr=m.x1 >= 2)
>>> m.y1.c2 = pyo.Constraint(expr=m.x2 >= 2)
>>> m.y2.c1 = pyo.Constraint(expr=m.x1 >= 3)
>>> m.y2.c2 = pyo.Constraint(expr=m.x2 >= 3)
>>> m.djn = Disjunction(expr=[m.y1, m.y2])

Invoke the GDPopt-LBB solver

>>> results = SolverFactory('gdpopt.lbb').solve(m)
>>> results = pyo.SolverFactory('gdpopt.lbb').solve(m)
WARNING: 09/06/22: The GDPopt LBB algorithm currently has known issues. Please
use the results with caution and report any bugs!

Expand All @@ -186,9 +188,70 @@ To use the GDPopt-LBB solver, define your Pyomo GDP model as usual:
>>> print(results.solver.termination_condition)
optimal

>>> print([value(m.y1.indicator_var), value(m.y2.indicator_var)])
>>> print([pyo.value(m.y1.indicator_var), pyo.value(m.y2.indicator_var)])
[True, False]

Logic-based Discrete-Steepest Descent Algorithm (LD-SDA)
--------------------------------------------------------

The GDPopt-LDSDA solver exploits the ordered Boolean variables in the disjunctions to solve the GDP model.
It requires an **exclusive OR (XOR) logical constraint** to ensure that exactly one disjunct is active in each disjunction.
The solver also requires a **starting point** for the discrete variables and allows users to choose between two **direction norms**, `'L2'` and `'Linf'`, to guide the search process.

.. note::

The current implementation of the GDPopt-LDSDA requires an explicit LogicalConstraint to enforce the exclusive OR condition for each disjunction.

To use the GDPopt-LDSDA solver, define your Pyomo GDP model as usual:

.. doctest::
:skipif: not baron_available

Required imports
>>> import pyomo.environ as pyo
>>> from pyomo.gdp import Disjunct, Disjunction

Create a simple model
>>> m = pyo.ConcreteModel()

Define sets
>>> I = [1, 2, 3, 4, 5]
>>> J = [1, 2, 3, 4, 5]

Define variables
>>> m.a = pyo.Var(bounds=(-0.3, 0.2))
>>> m.b = pyo.Var(bounds=(-0.9, -0.5))

Define disjuncts for Y1
>>> m.Y1_disjuncts = Disjunct(I)
>>> for i in I:
... m.Y1_disjuncts[i].y1_constraint = pyo.Constraint(expr=m.a == -0.3 + 0.1 * (i - 1))

Define disjuncts for Y2
>>> m.Y2_disjuncts = Disjunct(J)
>>> for j in J:
... m.Y2_disjuncts[j].y2_constraint = pyo.Constraint(expr=m.b == -0.9 + 0.1 * (j - 1))

Define disjunctions
>>> m.y1_disjunction = Disjunction(expr=[m.Y1_disjuncts[i] for i in I])
>>> m.y2_disjunction = Disjunction(expr=[m.Y2_disjuncts[j] for j in J])

Logical constraints to enforce exactly one selection
>>> m.Y1_limit = pyo.LogicalConstraint(expr=pyo.exactly(1, [m.Y1_disjuncts[i].indicator_var for i in I]))
>>> m.Y2_limit = pyo.LogicalConstraint(expr=pyo.exactly(1, [m.Y2_disjuncts[j].indicator_var for j in J]))

Define objective function
>>> m.obj = pyo.Objective(
... expr=4 * m.a**2 - 2.1 * m.a**4 + (1 / 3) * m.a**6 + m.a * m.b - 4 * m.b**2 + 4 * m.b**4,
... sense=pyo.minimize
... )

Invoke the GDPopt-LDSDA solver
>>> results = pyo.SolverFactory('gdpopt.ldsda').solve(m,
... starting_point=[1,1],
... logical_constraint_list=[m.Y1_limit, m.Y2_limit],
... direction_norm='Linf',
... )
GDPopt implementation and optional arguments
--------------------------------------------

Expand All @@ -204,4 +267,5 @@ GDPopt implementation and optional arguments
~pyomo.contrib.gdpopt.gloa.GDP_GLOA_Solver
~pyomo.contrib.gdpopt.ric.GDP_RIC_Solver
~pyomo.contrib.gdpopt.branch_and_bound.GDP_LBB_Solver
~pyomo.contrib.gdpopt.ldsda.GDP_LDSDA_Solver

Loading