Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rename indices to mask. Closes issue #91 #92

Merged
merged 6 commits into from
Sep 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added docs/examples/model.onnx
Binary file not shown.
10 changes: 4 additions & 6 deletions metalearners/drlearner.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,12 +150,12 @@ def fit_all_nuisance(
self._validate_treatment(w)
self._validate_outcome(y, w)

self._treatment_variants_indices = []
self._treatment_variants_mask = []

qualified_fit_params = self._qualified_fit_params(fit_params)

for treatment_variant in range(self.n_variants):
self._treatment_variants_indices.append(w == treatment_variant)
self._treatment_variants_mask.append(w == treatment_variant)

self._cv_split_indices: SplitIndices | None

Expand All @@ -168,10 +168,8 @@ def fit_all_nuisance(
for treatment_variant in range(self.n_variants):
nuisance_jobs.append(
self._nuisance_joblib_specifications(
X=index_matrix(
X, self._treatment_variants_indices[treatment_variant]
),
y=y[self._treatment_variants_indices[treatment_variant]],
X=index_matrix(X, self._treatment_variants_mask[treatment_variant]),
y=y[self._treatment_variants_mask[treatment_variant]],
model_kind=VARIANT_OUTCOME_MODEL,
model_ord=treatment_variant,
n_jobs_cross_fitting=n_jobs_cross_fitting,
Expand Down
14 changes: 7 additions & 7 deletions metalearners/metalearner.py
Original file line number Diff line number Diff line change
Expand Up @@ -1336,15 +1336,15 @@ def __init__(
n_folds=n_folds,
random_state=random_state,
)
self._treatment_variants_indices: list[np.ndarray] | None = None
self._treatment_variants_mask: list[np.ndarray] | None = None

def predict_conditional_average_outcomes(
self, X: Matrix, is_oos: bool, oos_method: OosMethod = OVERALL
) -> np.ndarray:
if self._treatment_variants_indices is None:
if self._treatment_variants_mask is None:
raise ValueError(
"The metalearner needs to be fitted before predicting."
"In particular, the MetaLearner's attribute _treatment_variant_indices, "
"In particular, the MetaLearner's attribute _treatment_variant_mask, "
"typically set during fitting, is None."
)
# TODO: Consider multiprocessing
Expand All @@ -1363,17 +1363,17 @@ def predict_conditional_average_outcomes(
)
else:
conditional_average_outcomes_list[tv][
self._treatment_variants_indices[tv]
self._treatment_variants_mask[tv]
] = self.predict_nuisance(
X=index_matrix(X, self._treatment_variants_indices[tv]),
X=index_matrix(X, self._treatment_variants_mask[tv]),
model_kind=VARIANT_OUTCOME_MODEL,
model_ord=tv,
is_oos=False,
)
conditional_average_outcomes_list[tv][
~self._treatment_variants_indices[tv]
~self._treatment_variants_mask[tv]
] = self.predict_nuisance(
X=index_matrix(X, ~self._treatment_variants_indices[tv]),
X=index_matrix(X, ~self._treatment_variants_mask[tv]),
model_kind=VARIANT_OUTCOME_MODEL,
model_ord=tv,
is_oos=True,
Expand Down
10 changes: 4 additions & 6 deletions metalearners/tlearner.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,21 +71,19 @@ def fit_all_nuisance(
self._validate_treatment(w)
self._validate_outcome(y, w)

self._treatment_variants_indices = []
self._treatment_variants_mask = []

for v in range(self.n_variants):
self._treatment_variants_indices.append(w == v)
self._treatment_variants_mask.append(w == v)

qualified_fit_params = self._qualified_fit_params(fit_params)

nuisance_jobs: list[_ParallelJoblibSpecification | None] = []
for treatment_variant in range(self.n_variants):
nuisance_jobs.append(
self._nuisance_joblib_specifications(
X=index_matrix(
X, self._treatment_variants_indices[treatment_variant]
),
y=y[self._treatment_variants_indices[treatment_variant]],
X=index_matrix(X, self._treatment_variants_mask[treatment_variant]),
y=y[self._treatment_variants_mask[treatment_variant]],
model_kind=VARIANT_OUTCOME_MODEL,
model_ord=treatment_variant,
n_jobs_cross_fitting=n_jobs_cross_fitting,
Expand Down
52 changes: 22 additions & 30 deletions metalearners/xlearner.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,17 +96,17 @@ def fit_all_nuisance(
self._validate_treatment(w)
self._validate_outcome(y, w)

self._treatment_variants_indices = []
self._treatment_variants_mask = []

qualified_fit_params = self._qualified_fit_params(fit_params)

self._cvs: list = []

for treatment_variant in range(self.n_variants):
self._treatment_variants_indices.append(w == treatment_variant)
self._treatment_variants_mask.append(w == treatment_variant)
if synchronize_cross_fitting:
cv_split_indices = self._split(
index_matrix(X, self._treatment_variants_indices[treatment_variant])
index_matrix(X, self._treatment_variants_mask[treatment_variant])
)
else:
cv_split_indices = None
Expand All @@ -116,10 +116,8 @@ def fit_all_nuisance(
for treatment_variant in range(self.n_variants):
nuisance_jobs.append(
self._nuisance_joblib_specifications(
X=index_matrix(
X, self._treatment_variants_indices[treatment_variant]
),
y=y[self._treatment_variants_indices[treatment_variant]],
X=index_matrix(X, self._treatment_variants_mask[treatment_variant]),
y=y[self._treatment_variants_mask[treatment_variant]],
model_kind=VARIANT_OUTCOME_MODEL,
model_ord=treatment_variant,
n_jobs_cross_fitting=n_jobs_cross_fitting,
Expand Down Expand Up @@ -159,10 +157,10 @@ def fit_all_treatment(
synchronize_cross_fitting: bool = True,
n_jobs_base_learners: int | None = None,
) -> Self:
if self._treatment_variants_indices is None:
if self._treatment_variants_mask is None:
raise ValueError(
"The nuisance models need to be fitted before fitting the treatment models."
"In particular, the MetaLearner's attribute _treatment_variant_indices, "
"In particular, the MetaLearner's attribute _treatment_variant_mask, "
"typically set during nuisance fitting, is None."
)
if not hasattr(self, "_cvs"):
Expand All @@ -188,9 +186,7 @@ def fit_all_treatment(
)
treatment_jobs.append(
self._treatment_joblib_specifications(
X=index_matrix(
X, self._treatment_variants_indices[treatment_variant]
),
X=index_matrix(X, self._treatment_variants_mask[treatment_variant]),
y=imputed_te_treatment,
model_kind=TREATMENT_EFFECT_MODEL,
model_ord=treatment_variant - 1,
Expand All @@ -202,7 +198,7 @@ def fit_all_treatment(

treatment_jobs.append(
self._treatment_joblib_specifications(
X=index_matrix(X, self._treatment_variants_indices[0]),
X=index_matrix(X, self._treatment_variants_mask[0]),
y=imputed_te_control,
model_kind=CONTROL_EFFECT_MODEL,
model_ord=treatment_variant - 1,
Expand All @@ -225,10 +221,10 @@ def predict(
is_oos: bool,
oos_method: OosMethod = OVERALL,
) -> np.ndarray:
if self._treatment_variants_indices is None:
if self._treatment_variants_mask is None:
raise ValueError(
"The MetaLearner needs to be fitted before predicting. "
"In particular, the X-Learner's attribute _treatment_variant_indices, "
"In particular, the X-Learner's attribute _treatment_variant_mask, "
"typically set during fitting, is None."
)
n_outputs = 2 if self.is_classification else 1
Expand All @@ -243,14 +239,12 @@ def predict(
oos_method=propensity_score_oos,
)

control_indices = self._treatment_variants_indices[0]
control_indices = self._treatment_variants_mask[0]
non_control_indices = ~control_indices

for treatment_variant in range(1, self.n_variants):
treatment_variant_indices = self._treatment_variants_indices[
treatment_variant
]
non_treatment_variant_indices = ~treatment_variant_indices
treatment_variant_mask = self._treatment_variants_mask[treatment_variant]
non_treatment_variant_mask = ~treatment_variant_mask
if is_oos:
tau_hat_treatment = self.predict_treatment(
X=X,
Expand All @@ -270,18 +264,16 @@ def predict(
tau_hat_treatment = np.zeros(safe_len(X))
tau_hat_control = np.zeros(safe_len(X))

tau_hat_treatment[non_treatment_variant_indices] = (
self.predict_treatment(
X=index_matrix(X, non_treatment_variant_indices),
model_kind=TREATMENT_EFFECT_MODEL,
model_ord=treatment_variant - 1,
is_oos=True,
oos_method=oos_method,
)
tau_hat_treatment[non_treatment_variant_mask] = self.predict_treatment(
X=index_matrix(X, non_treatment_variant_mask),
model_kind=TREATMENT_EFFECT_MODEL,
model_ord=treatment_variant - 1,
is_oos=True,
oos_method=oos_method,
)

tau_hat_treatment[treatment_variant_indices] = self.predict_treatment(
X=index_matrix(X, treatment_variant_indices),
tau_hat_treatment[treatment_variant_mask] = self.predict_treatment(
X=index_matrix(X, treatment_variant_mask),
model_kind=TREATMENT_EFFECT_MODEL,
model_ord=treatment_variant - 1,
is_oos=False,
Expand Down
4 changes: 2 additions & 2 deletions tests/test_learner.py
Original file line number Diff line number Diff line change
Expand Up @@ -880,10 +880,10 @@ def test_model_reusage(outcome_kind, request):
VARIANT_OUTCOME_MODEL: tlearner._nuisance_models[VARIANT_OUTCOME_MODEL]
},
)
# We need to manually copy _treatment_variants_indices for the xlearner as it's needed
# We need to manually copy _treatment_variants_mask for the xlearner as it's needed
# for predict, the user should not have to do this as they should call fit before predict.
# This is just for testing.
xlearner._treatment_variants_indices = tlearner._treatment_variants_indices
xlearner._treatment_variants_mask = tlearner._treatment_variants_mask
np.testing.assert_allclose(
tlearner.predict_conditional_average_outcomes(covariates, False),
xlearner.predict_conditional_average_outcomes(covariates, False),
Expand Down
Loading