Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closes #591 | Add/Update medisco #654

Merged
merged 4 commits into from
May 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
136 changes: 136 additions & 0 deletions seacrowd/sea_datasets/medisco/medisco.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks

_DATASETNAME = "medisco"

_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_CITATION = """\
@INPROCEEDINGS{8629259,
author={Qorib, Muhammad Reza and Adriani, Mirna},
booktitle={2018 International Conference on Asian Language Processing (IALP)},
title={Building MEDISCO: Indonesian Speech Corpus for Medical Domain},
year={2018},
volume={},
number={},
pages={133-138},
keywords={Training;Automatic speech recognition;Medical services;Writing;Buildings;Computer science;Indonesian Automatic Speech Recognition;Medical Speech Corpus;Text Corpus},
doi={10.1109/IALP.2018.8629259}
}
"""

_DESCRIPTION = "MEDISCO is a medical Indonesian speech corpus that contains 731 medical terms and consists of 4,680 utterances with total duration 10 hours"

_HOMEPAGE = "https://mrqorib.github.io/2018/02/01/building-medisco.html"

_LICENSE = "GNU General Public License v3.0 (gpl-3.0)"

_URLs = {
"medisco": {
"train": {
"audio": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/train/audio.tar.gz",
"text": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/train/annotation/sentences.txt",
},
"test": {"audio": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/test/audio.tar.gz", "text": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/test/annotation/sentences.txt"},
}
}

_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "1.0.0"


class Medisco(datasets.GeneratorBasedBuilder):
"MEDISCO is a medical Indonesian speech corpus that contains 731 medical terms and consists of 4,680 utterances with total duration 10 hours"

BUILDER_CONFIGS = [
SEACrowdConfig(
name="medisco_source",
version=datasets.Version(_SOURCE_VERSION),
description="MEDISCO source schema",
schema="source",
subset_id="medisco",
),
SEACrowdConfig(
name="medisco_seacrowd_sptext",
version=datasets.Version(_SEACROWD_VERSION),
description="MEDISCO seacrowd schema",
schema="seacrowd_sptext",
subset_id="medisco",
),
]

DEFAULT_CONFIG_NAME = "medisco_source"

def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=44_100),
"text": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
base_path = _URLs["medisco"]

return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": dl_manager.download_and_extract(base_path["train"]["audio"]), "text_path": dl_manager.download_and_extract(base_path["train"]["text"]), "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": dl_manager.download_and_extract(base_path["test"]["audio"]), "text_path": dl_manager.download_and_extract(base_path["test"]["text"]), "split": "test"},
),
]

def _generate_examples(self, filepath: Path, text_path: Path, split: str) -> Tuple[int, Dict]:

with open(text_path, encoding="utf-8") as f:
texts = f.readlines() # contains trailing \n

for speaker_id in os.listdir(filepath):
speaker_path = os.path.join(filepath, speaker_id)
if not os.path.isdir(speaker_path):
continue
for audio_id in os.listdir(speaker_path):
audio_idx = int(audio_id.split(".", 1)[0]) - 1 # get 0-based index
audio_path = os.path.join(speaker_path, audio_id)
key = "{}_{}_{}".format(split, speaker_id, audio_idx)
example = {
"id": key,
"speaker_id": speaker_id,
"path": audio_path,
"audio": audio_path,
"text": texts[audio_idx].strip(),
}
if self.config.schema == "seacrowd_sptext":
gender = speaker_id.split("-", 1)[0]
example["metadata"] = {
"speaker_gender": gender,
"speaker_age": None,
}
yield key, example