-
Notifications
You must be signed in to change notification settings - Fork 39
Module LRSplines2D
Box. Given an integer
If
Mesh. Let
In order to consider splines on the domain
- A $k$-constant split is a union
$\gamma = \bigcup_i \gamma_i$ of$k$ -meshrectangles$\gamma_i$ ... - A (
$\mu$ -extended) LR-mesh is a$\mu$ -extended box-mesh$(\mathcal{M}, \mu)$ , recursively defined as either-
$(\mathcal{M}, \mu)$ is a$\mu$ -extended tensor-mesh, or -
$(\mathcal{M}, \mu) = (\overline{\mathcal{M}} \cup \gamma, \overline{\mu})$ , where$(\overline{\mathcal{M}}, \overline{\mu})$ is a$\mu$ -extended LR-mesh and$\gamma$ is a constant split of$(\overline{\mathcal{M}}, \overline{\mu})$ .
-
- T. Dokken, T. Lyche, K.F. Pettersen. Polynomial splines over locally refined box-partitions, Computer Aided Geometric Design, Volume 30, Issue 3, March 2013, Pages 331--356
Getting started
Miscellaneous
Functionality
- Modules
- gotools-core
- compositemodel
- implicitization
- igeslib
- intersections
- isogeometric_model
- lrsplines2D
- parametrization
- qualitymodule
- topology
- trivariate
- trivariatemodel
- viewlib
Dependencies