Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introduce idx_prev to use as iguess #273

Merged
merged 6 commits into from
Jun 29, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 36 additions & 36 deletions src/derivatives.jl
Original file line number Diff line number Diff line change
@@ -1,23 +1,29 @@
function derivative(A, t, order = 1)
order > 2 && throw(DerivativeNotFoundError())
((t < A.t[1] || t > A.t[end]) && !A.extrapolate) && throw(ExtrapolationError())
order == 1 && return _derivative(A, t, firstindex(A.t) - 1)[1]
return ForwardDiff.derivative(t -> _derivative(A, t, firstindex(A.t) - 1)[1], t)
iguess = A.idx_prev[]

return if order == 1
val, idx = _derivative(A, t, iguess)
A.idx_prev[] = idx
val
elseif order == 2
ForwardDiff.derivative(t -> begin
val, idx = _derivative(A, t, iguess)
A.idx_prev[] = idx
val
end, t)
else
throw(DerivativeNotFoundError())
end
end

function _derivative(A::LinearInterpolation{<:AbstractVector}, t::Number, iguess)
idx = searchsortedfirstcorrelated(A.t, t, iguess)
idx > length(A.t) ? idx -= 1 : nothing
idx -= 1
idx == 0 ? idx += 1 : nothing
idx = get_idx(A.t, t, iguess; idx_shift = -1, ub_shift = -2, side = :first)
(A.u[idx + 1] - A.u[idx]) / (A.t[idx + 1] - A.t[idx]), idx
end

function _derivative(A::LinearInterpolation{<:AbstractMatrix}, t::Number, iguess)
idx = searchsortedfirstcorrelated(A.t, t, iguess)
idx > length(A.t) ? idx -= 1 : nothing
idx -= 1
idx == 0 ? idx += 1 : nothing
idx = get_idx(A.t, t, iguess; idx_shift = -1, ub_shift = -2, side = :first)
(@views @. (A.u[:, idx + 1] - A.u[:, idx]) / (A.t[idx + 1] - A.t[idx])), idx
end

Expand Down Expand Up @@ -105,17 +111,18 @@ function _derivative(A::LagrangeInterpolation{<:AbstractMatrix}, t::Number)
der
end

_derivative(A::LagrangeInterpolation{<:AbstractVector}, t::Number, i) = _derivative(A, t), i
_derivative(A::LagrangeInterpolation{<:AbstractMatrix}, t::Number, i) = _derivative(A, t), i
function _derivative(A::LagrangeInterpolation{<:AbstractVector}, t::Number, idx)
_derivative(A, t), idx
end
function _derivative(A::LagrangeInterpolation{<:AbstractMatrix}, t::Number, idx)
_derivative(A, t), idx
end

function _derivative(A::AkimaInterpolation{<:AbstractVector}, t::Number, iguess)
i = searchsortedfirstcorrelated(A.t, t, iguess)
i > length(A.t) ? i -= 1 : nothing
i -= 1
i == 0 ? i += 1 : nothing
j = min(i, length(A.c)) # for smooth derivative at A.t[end]
wj = t - A.t[i]
(@evalpoly wj A.b[i] 2A.c[j] 3A.d[j]), i
idx = get_idx(A.t, t, iguess; idx_shift = -1, side = :first)
j = min(idx, length(A.c)) # for smooth derivative at A.t[end]
wj = t - A.t[idx]
(@evalpoly wj A.b[idx] 2A.c[j] 3A.d[j]), idx
end

function _derivative(A::ConstantInterpolation{<:AbstractVector}, t::Number)
Expand All @@ -130,32 +137,26 @@ end

# QuadraticSpline Interpolation
function _derivative(A::QuadraticSpline{<:AbstractVector}, t::Number, iguess)
idx = searchsortedfirstcorrelated(A.t, t, iguess)
idx > length(A.t) ? idx -= 1 : nothing
idx == 1 ? idx += 1 : nothing
idx = get_idx(A.t, t, iguess; lb = 2, ub_shift = 0, side = :first)
σ = 1 // 2 * (A.z[idx] - A.z[idx - 1]) / (A.t[idx] - A.t[idx - 1])
A.z[idx - 1] + 2σ * (t - A.t[idx - 1]), idx
end

# CubicSpline Interpolation
function _derivative(A::CubicSpline{<:AbstractVector}, t::Number, iguess)
i = searchsortedfirstcorrelated(A.t, t, iguess)
i > length(A.t) ? i -= 1 : nothing
i -= 1
i == 0 ? i += 1 : nothing
dI = -3A.z[i] * (A.t[i + 1] - t)^2 / (6A.h[i + 1]) +
3A.z[i + 1] * (t - A.t[i])^2 / (6A.h[i + 1])
dC = A.u[i + 1] / A.h[i + 1] - A.z[i + 1] * A.h[i + 1] / 6
dD = -(A.u[i] / A.h[i + 1] - A.z[i] * A.h[i + 1] / 6)
dI + dC + dD, i
idx = get_idx(A.t, t, iguess)
dI = -3A.z[idx] * (A.t[idx + 1] - t)^2 / (6A.h[idx + 1]) +
3A.z[idx + 1] * (t - A.t[idx])^2 / (6A.h[idx + 1])
dC = A.u[idx + 1] / A.h[idx + 1] - A.z[idx + 1] * A.h[idx + 1] / 6
dD = -(A.u[idx] / A.h[idx + 1] - A.z[idx] * A.h[idx + 1] / 6)
dI + dC + dD, idx
end

function _derivative(A::BSplineInterpolation{<:AbstractVector{<:Number}}, t::Number, iguess)
# change t into param [0 1]
t < A.t[1] && return zero(A.u[1]), 1
t > A.t[end] && return zero(A.u[end]), lastindex(t)
idx = searchsortedlastcorrelated(A.t, t, iguess)
idx == length(A.t) ? idx -= 1 : nothing
idx = get_idx(A.t, t, iguess)
n = length(A.t)
scale = (A.p[idx + 1] - A.p[idx]) / (A.t[idx + 1] - A.t[idx])
t_ = A.p[idx] + (t - A.t[idx]) * scale
Expand All @@ -176,8 +177,7 @@ function _derivative(A::BSplineApprox{<:AbstractVector{<:Number}}, t::Number, ig
# change t into param [0 1]
t < A.t[1] && return zero(A.u[1]), 1
t > A.t[end] && return zero(A.u[end]), lastindex(t)
idx = searchsortedlastcorrelated(A.t, t, iguess)
idx == length(A.t) ? idx -= 1 : nothing
idx = get_idx(A.t, t, iguess)
scale = (A.p[idx + 1] - A.p[idx]) / (A.t[idx + 1] - A.t[idx])
t_ = A.p[idx] + (t - A.t[idx]) * scale
N = spline_coefficients(A.h, A.d - 1, A.k, t_)
Expand Down
39 changes: 30 additions & 9 deletions src/interpolation_caches.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,9 @@ struct LinearInterpolation{uType, tType, T} <: AbstractInterpolation{T}
u::uType
t::tType
extrapolate::Bool
idx_prev::Base.RefValue{Int}
function LinearInterpolation(u, t, extrapolate)
new{typeof(u), typeof(t), eltype(u)}(u, t, extrapolate)
new{typeof(u), typeof(t), eltype(u)}(u, t, extrapolate, Ref(1))
end
end

Expand Down Expand Up @@ -48,10 +49,11 @@ struct QuadraticInterpolation{uType, tType, T} <: AbstractInterpolation{T}
t::tType
mode::Symbol
extrapolate::Bool
idx_prev::Base.RefValue{Int}
function QuadraticInterpolation(u, t, mode, extrapolate)
mode ∈ (:Forward, :Backward) ||
error("mode should be :Forward or :Backward for QuadraticInterpolation")
new{typeof(u), typeof(t), eltype(u)}(u, t, mode, extrapolate)
new{typeof(u), typeof(t), eltype(u)}(u, t, mode, extrapolate, Ref(1))
end
end

Expand Down Expand Up @@ -86,14 +88,17 @@ struct LagrangeInterpolation{uType, tType, T, bcacheType} <:
n::Int
bcache::bcacheType
extrapolate::Bool
idx_prev::Base.RefValue{Int}
function LagrangeInterpolation(u, t, n, extrapolate)
bcache = zeros(eltype(u[1]), n + 1)
fill!(bcache, NaN)
new{typeof(u), typeof(t), eltype(u), typeof(bcache)}(u,
t,
n,
bcache,
extrapolate)
extrapolate,
Ref(1)
)
end
end

Expand Down Expand Up @@ -128,14 +133,17 @@ struct AkimaInterpolation{uType, tType, bType, cType, dType, T} <:
c::cType
d::dType
extrapolate::Bool
idx_prev::Base.RefValue{Int}
function AkimaInterpolation(u, t, b, c, d, extrapolate)
new{typeof(u), typeof(t), typeof(b), typeof(c),
typeof(d), eltype(u)}(u,
t,
b,
c,
d,
extrapolate)
extrapolate,
Ref(1)
)
end
end

Expand Down Expand Up @@ -186,8 +194,9 @@ struct ConstantInterpolation{uType, tType, dirType, T} <: AbstractInterpolation{
t::tType
dir::Symbol # indicates if value to the $dir should be used for the interpolation
extrapolate::Bool
idx_prev::Base.RefValue{Int}
function ConstantInterpolation(u, t, dir, extrapolate)
new{typeof(u), typeof(t), typeof(dir), eltype(u)}(u, t, dir, extrapolate)
new{typeof(u), typeof(t), typeof(dir), eltype(u)}(u, t, dir, extrapolate, Ref(1))
end
end

Expand Down Expand Up @@ -219,14 +228,17 @@ struct QuadraticSpline{uType, tType, tAType, dType, zType, T} <:
d::dType
z::zType
extrapolate::Bool
idx_prev::Base.RefValue{Int}
function QuadraticSpline(u, t, tA, d, z, extrapolate)
new{typeof(u), typeof(t), typeof(tA),
typeof(d), typeof(z), eltype(u)}(u,
t,
tA,
d,
z,
extrapolate)
extrapolate,
Ref(1)
)
end
end

Expand Down Expand Up @@ -286,12 +298,15 @@ struct CubicSpline{uType, tType, hType, zType, T} <: AbstractInterpolation{T}
h::hType
z::zType
extrapolate::Bool
idx_prev::Base.RefValue{Int}
function CubicSpline(u, t, h, z, extrapolate)
new{typeof(u), typeof(t), typeof(h), typeof(z), eltype(u)}(u,
t,
h,
z,
extrapolate)
extrapolate,
Ref(1)
)
end
end

Expand Down Expand Up @@ -365,6 +380,7 @@ struct BSplineInterpolation{uType, tType, pType, kType, cType, T} <:
pVecType::Symbol
knotVecType::Symbol
extrapolate::Bool
idx_prev::Base.RefValue{Int}
function BSplineInterpolation(u,
t,
d,
Expand All @@ -382,7 +398,9 @@ struct BSplineInterpolation{uType, tType, pType, kType, cType, T} <:
c,
pVecType,
knotVecType,
extrapolate)
extrapolate,
Ref(1)
)
end
end

Expand Down Expand Up @@ -482,6 +500,7 @@ struct BSplineApprox{uType, tType, pType, kType, cType, T} <:
pVecType::Symbol
knotVecType::Symbol
extrapolate::Bool
idx_prev::Base.RefValue{Int}
function BSplineApprox(u,
t,
d,
Expand All @@ -501,7 +520,9 @@ struct BSplineApprox{uType, tType, pType, kType, cType, T} <:
c,
pVecType,
knotVecType,
extrapolate)
extrapolate,
Ref(1)
)
end
end

Expand Down
Loading