Skip to content

Commit

Permalink
Deployed 6a282ea with MkDocs version: 1.6.0
Browse files Browse the repository at this point in the history
  • Loading branch information
KentaroUno committed Jul 15, 2024
1 parent e657977 commit 263f8b8
Show file tree
Hide file tree
Showing 4 changed files with 4 additions and 3 deletions.
2 changes: 1 addition & 1 deletion basics/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,7 @@ <h2 id="basic-knowledge-for-spacedyn-user">Basic Knowledge for SpaceDyn User</h2
<p>For the representation of attitude or orientation, we use 3 by 3 direction cosine matrices. The advantage of direction cosine is (1) singularity free, (2) we can easily defive Roll-Pitch-Yaw angles, Euler angles, or quartanions, and (3) it is easy to find the mathematical relationship with angular velocity. </p>
</li>
<li>
<p>On the other hand, we frequently need Roll-Pitch-Yaw (RPY) replresentation also. For example, in order to express the twisting angles between two coordinate systems, we consider <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\alpha=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> (roll) around <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span>-axis, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>β</mi></mrow><annotation encoding="application/x-tex">\beta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span></span></span></span> (pitch) around <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>-axis, then <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.05556em;">γ</span></span></span></span> (yaw) around <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span>-axis.</p>
<p>On the other hand, we frequently need Roll-Pitch-Yaw (RPY) replresentation also. For example, in order to express the twisting angles between two coordinate systems, we consider <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span></span> (roll) around <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span>-axis, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>β</mi></mrow><annotation encoding="application/x-tex">\beta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.05278em;">β</span></span></span></span> (pitch) around <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>-axis, then <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.05556em;">γ</span></span></span></span> (yaw) around <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span>-axis.</p>
</li>
<li>
<p>Weak points: The SpaceDyn is not good at dealing with kinematic constraints other than joint axes. It is also weak at dealing with the problems in which a contact point is dynamically changing. For those problems, a good user programming is required to model the constraint forces. </p>
Expand Down
1 change: 1 addition & 0 deletions css/custom.css
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
body {
font-family: "Arial";
--themecolor: #002060;
text-align: justify;
}

h1, h2, h3, h4, h5, h6 {
Expand Down
2 changes: 1 addition & 1 deletion index.html
Original file line number Diff line number Diff line change
Expand Up @@ -229,5 +229,5 @@ <h2 id="acknowledgement">Acknowledgement</h2>

<!--
MkDocs version : 1.6.0
Build Date UTC : 2024-07-15 13:11:33.477909+00:00
Build Date UTC : 2024-07-15 13:17:57.107220+00:00
-->
2 changes: 1 addition & 1 deletion search/search_index.json

Large diffs are not rendered by default.

0 comments on commit 263f8b8

Please sign in to comment.