Compute Time to collision using Yolo for object localization and detection and projecting the point cloud data to images.
- First, you will develop a way to match 3D objects over time by using keypoint correspondences.
- Second, you will compute the TTC based on Lidar measurements.
- You will then proceed to do the same using the camera, which requires to first associate keypoint matches to regions of interest and then to compute the TTC based on those matches.
- And lastly, you will conduct various tests with the framework. Your goal is to identify the most suitable detector/descriptor combination for TTC estimation and also to search for problems that can lead to faulty measurements by the camera or Lidar sensor. In the last course of this Nanodegree, you will learn about the Kalman filter, which is a great way to combine the two independent TTC measurements into an improved version which is much more reliable than a single sensor alone can be. But before we think about such things, let us focus on your final project in the camera course.
- cmake >= 2.8
- All OSes: click here for installation instructions
- make >= 4.1 (Linux, Mac), 3.81 (Windows)
- Linux: make is installed by default on most Linux distros
- Mac: install Xcode command line tools to get make
- Windows: Click here for installation instructions
- Git LFS
- Weight files are handled using LFS
- OpenCV >= 4.1
- This must be compiled from source using the
-D OPENCV_ENABLE_NONFREE=ON
cmake flag for testing the SIFT and SURF detectors. - The OpenCV 4.1.0 source code can be found here
- This must be compiled from source using the
- gcc/g++ >= 5.4
- Linux: gcc / g++ is installed by default on most Linux distros
- Mac: same deal as make - install Xcode command line tools
- Windows: recommend using MinGW
- Clone this repo.
- Make a build directory in the top level project directory:
mkdir build && cd build
- Compile:
cmake .. && make
- Run it:
./3D_object_tracking
.