Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

132 example data and scripts not unified #139

Merged
merged 19 commits into from
Feb 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
19 commits
Select commit Hold shift + click to select a range
18816a3
Add hope from downloadable datasets
MedericFourmy Feb 19, 2024
12858f4
Refacor run_inference_on_example
MedericFourmy Feb 19, 2024
82469a8
Unfiformize inference examples and tests between mega/cosy pose, refa…
MedericFourmy Feb 20, 2024
7b7dba8
Adapt inference examples and tests to new barbecue-sauce structure
MedericFourmy Feb 20, 2024
f884b64
ObservationTensor.to(device) function
MedericFourmy Feb 20, 2024
b9e59bf
Allow running detector in inference example scripts
MedericFourmy Feb 20, 2024
e132c2a
Update documentation and CI with barbecue-sauce example
MedericFourmy Feb 20, 2024
353b6a0
Merge branch 'dev' into 132-example-data-and-scripts-not-unified
MedericFourmy Feb 20, 2024
5f7fff9
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Feb 21, 2024
8457d58
Merge branch 'dev' into 132-example-data-and-scripts-not-unified
MedericFourmy Feb 21, 2024
e9fa82d
add tensor conversion to Transform
MedericFourmy Feb 22, 2024
64b4896
Fix cosy wrapper default param
MedericFourmy Feb 26, 2024
4cb0305
Fix urdf conversion script
MedericFourmy Feb 26, 2024
4b9a9de
Fix np warning
MedericFourmy Feb 26, 2024
be01907
Panda3dObjectData TWO input attempt construct Transform
MedericFourmy Feb 27, 2024
ba99eb5
Bullet scene renderer accepts OneUrdfDataset
MedericFourmy Feb 27, 2024
e0999c7
make_object_dataset RigidObjectDataset accepts "tless" -> "tless.cad"
MedericFourmy Feb 27, 2024
eb0b8d0
Fix multiview gif viz
MedericFourmy Feb 27, 2024
902416e
reraise caught exception
MedericFourmy Feb 28, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions .github/workflows/conda-test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -60,11 +60,11 @@ jobs:
python -m happypose.toolbox.utils.download \
--megapose_models \
--examples \
crackers_example \
barbecue-sauce \
--cosypose_models \
detector-bop-ycbv-pbr--970850 \
coarse-bop-ycbv-pbr--724183 \
refiner-bop-ycbv-pbr--604090
detector-bop-hope-pbr--15246 \
coarse-bop-hope-pbr--225203 \
refiner-bop-hope-pbr--955392

- name: Run tests
run: python -m unittest
8 changes: 4 additions & 4 deletions .github/workflows/pip-test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -38,11 +38,11 @@ jobs:
python -m happypose.toolbox.utils.download \
--megapose_models \
--examples \
crackers_example \
barbecue-sauce \
--cosypose_models \
detector-bop-ycbv-pbr--970850 \
coarse-bop-ycbv-pbr--724183 \
refiner-bop-ycbv-pbr--604090
detector-bop-hope-pbr--15246 \
coarse-bop-hope-pbr--225203 \
refiner-bop-hope-pbr--955392

- name: Run tests
run: python -m unittest
8 changes: 4 additions & 4 deletions .github/workflows/poetry-test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -39,11 +39,11 @@ jobs:
poetry run python -m happypose.toolbox.utils.download \
--megapose_models \
--examples \
crackers_example \
barbecue-sauce \
--cosypose_models \
detector-bop-ycbv-pbr--970850 \
coarse-bop-ycbv-pbr--724183 \
refiner-bop-ycbv-pbr--604090
detector-bop-hope-pbr--15246 \
coarse-bop-hope-pbr--225203 \
refiner-bop-hope-pbr--955392

- name: Run tests
run: poetry run coverage run --source=happypose -m unittest
Expand Down
28 changes: 17 additions & 11 deletions docs/book/cosypose/download_data.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,17 +47,23 @@ Notes:
## Models for minimal version

```sh
#ycbv
python -m happypose.toolbox.utils.download --cosypose_models \
detector-bop-ycbv-pbr--970850 \
coarse-bop-ycbv-pbr--724183 \
refiner-bop-ycbv-pbr--604090

#tless
python -m happypose.toolbox.utils.download --cosypose_models \
detector-bop-tless-pbr--873074 \
coarse-bop-tless-pbr--506801 \
refiner-bop-tless-pbr--233420
# hope
python -m happypose.toolbox.utils.download --cosypose_models \
detector-bop-hope-pbr--15246 \
coarse-bop-hope-pbr--225203 \
refiner-bop-hope-pbr--955392

# ycbv
python -m happypose.toolbox.utils.download --cosypose_models \
detector-bop-ycbv-pbr--970850 \
coarse-bop-ycbv-pbr--724183 \
refiner-bop-ycbv-pbr--604090

# tless
python -m happypose.toolbox.utils.download --cosypose_models \
detector-bop-tless-pbr--873074 \
coarse-bop-tless-pbr--506801 \
refiner-bop-tless-pbr--233420
```

## Pre-trained models for single-view estimator
Expand Down
Binary file modified docs/book/cosypose/images/all_results.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
18 changes: 8 additions & 10 deletions docs/book/cosypose/inference.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,11 @@ Here are provided the minimal commands you have to run in order to run the infer
## 1. Download pre-trained pose estimation models

```sh
#ycbv
#hope dataset detector
python -m happypose.toolbox.utils.download --cosypose_models \
detector-bop-ycbv-pbr--970850 \
coarse-bop-ycbv-pbr--724183 \
refiner-bop-ycbv-pbr--604090
detector-bop-hope-pbr--15246 \
coarse-bop-hope-pbr--225203 \
refiner-bop-hope-pbr--955392
```

## 2. Download YCB-V Dataset
Expand All @@ -21,19 +21,17 @@ python -m happypose.toolbox.utils.download --bop_dataset=ycbv
## 3. Download the example

```sh
cd $HAPPYPOSE_DATA_DIR
wget https://memmo-data.laas.fr/static/examples.tar.xz
tar xf examples.tar.xz
python -m happypose.toolbox.utils.download --examples barbecue-sauce
```

## 4. Run the script

The example contains default outputs for detection and pose prediction
```sh
python -m happypose.pose_estimators.cosypose.cosypose.scripts.run_inference_on_example crackers --run-inference
python -m happypose.pose_estimators.cosypose.cosypose.scripts.run_inference_on_example barbecue-sauce --run-inference --run-detections --vis-detections --vis-poses
```

## 5. Results

The results are stored in the visualization folder created in the crackers example directory.
The results are stored in the visualization folder created in the example directory.

![Inference results](./images/all_results.png)
28 changes: 20 additions & 8 deletions docs/book/megapose/download_data.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,26 @@ python -m happypose.toolbox.utils.download --megapose_models
# Download pre-trained detection models
Megapose can use pretrained detectors from CosyPose, which can be downloaded to `$HAPPYPOSE_DATA_DIR/experiments`:

python -m happypose.toolbox.utils.download --cosypose_model detector-bop-hb-pbr--497808
python -m happypose.toolbox.utils.download --cosypose_model detector-bop-hope-pbr--15246
python -m happypose.toolbox.utils.download --cosypose_model detector-bop-icbin-pbr--947409
python -m happypose.toolbox.utils.download --cosypose_model detector-bop-itodd-pbr--509908
python -m happypose.toolbox.utils.download --cosypose_model detector-bop-lmo-pbr--517542
python -m happypose.toolbox.utils.download --cosypose_model detector-bop-tless-pbr--873074
python -m happypose.toolbox.utils.download --cosypose_model detector-bop-tudl-pbr--728047
python -m happypose.toolbox.utils.download --cosypose_model detector-bop-ycbv-pbr--970850
```sh
# hope
python -m happypose.toolbox.utils.download --cosypose_models \
detector-bop-hope-pbr--15246 \
coarse-bop-hope-pbr--225203 \
refiner-bop-hope-pbr--955392

# ycbv

python -m happypose.toolbox.utils.download --cosypose_models \
detector-bop-ycbv-pbr--970850 \
coarse-bop-ycbv-pbr--724183 \
refiner-bop-ycbv-pbr--604090

# tless
python -m happypose.toolbox.utils.download --cosypose_models \
detector-bop-tless-pbr--873074 \
coarse-bop-tless-pbr--506801 \
refiner-bop-tless-pbr--233420
```

# Dataset

Expand Down
6 changes: 4 additions & 2 deletions docs/book/megapose/evaluate.md
Original file line number Diff line number Diff line change
Expand Up @@ -119,10 +119,12 @@ module load module load anaconda-py3/2023.03
conda activate happypose

cd happypose
# python -m happypose.pose_estimators.megapose.src.megapose.scripts.run_inference_on_example barbecue-sauce --run-inference --vis-outputs
python -m happypose.pose_estimators.cosypose.cosypose.scripts.run_inference_on_example crackers --run-inference
# Assuming you have downloaded the example and models
python -m happypose.pose_estimators.cosypose.cosypose.scripts.run_inference_on_example barbecue-sauce --run-inference
# python -m happypose.pose_estimators.megapose.scripts.run_inference_on_example barbecue-sauce --run-inference
```


```bash
# evaluation.slurm
#!/bin/bash
Expand Down
24 changes: 9 additions & 15 deletions docs/book/megapose/inference.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,7 @@ python -m happypose.toolbox.utils.download --megapose_models
We estimate the pose for a barbecue sauce bottle (from the [HOPE](https://github.com/swtyree/hope-dataset) dataset, not used during training of MegaPose).

```sh
cd $HAPPYPOSE_DATA_DIR
wget https://memmo-data.laas.fr/static/examples.tar.xz
tar xf examples.tar.xz
python -m happypose.toolbox.utils.download --examples barbecue-sauce
```

The input files are the following:
Expand All @@ -25,8 +23,8 @@ $HAPPYPOSE_DATA_DIR/examples/barbecue-sauce/
image_depth.png
camera_data.json
inputs/object_data.json
meshes/barbecue-sauce/hope_000002.ply
meshes/barbecue-sauce/hope_000002.png
meshes/hope-obj_000002.ply
meshes/hope-obj_000002.png
```
- `image_rgb.png` is a RGB image of the scene. We recommend using a 4:3 aspect ratio.
- `image_depth.png` (optional) contains depth measurements, with values in `mm`. You can leave out this file if you don't have depth measurements.
Expand All @@ -36,9 +34,9 @@ $HAPPYPOSE_DATA_DIR/examples/barbecue-sauce/

- `inputs/object_data.json` contains a list of object detections. For each detection, the 2D bounding box in the image (in `[xmin, ymin, xmax, ymax]` format), and the label of the object are provided. In this example, there is a single object detection. The bounding box is only used for computing an initial depth estimate of the object which is then refined by our approach. The bounding box does not need to be extremly precise (see below).

`[{"label": "barbecue-sauce", "bbox_modal": [384, 234, 522, 455]}]`
`[{"label": "hope-obj_000002", "bbox_modal": [384, 234, 522, 455]}]`

- `meshes/barbecue-sauce` is a directory containing the object's mesh. Mesh units are expected to be in millimeters. In this example, we use a mesh in `.ply` format. The code also supports `.obj` meshes but you will have to make sure that the objects are rendered correctly with our renderer.
- `meshes` is a directory containing the object's mesh. Mesh units are expected to be in millimeters. In this example, we use a mesh in `.ply` format. The code also supports `.obj` meshes but you will have to make sure that the objects are rendered correctly with our renderer.


You can visualize input detections using :
Expand All @@ -52,27 +50,23 @@ python -m happypose.pose_estimators.megapose.scripts.run_inference_on_example ba
## 3. Run pose estimation and visualize results
Run inference with the following command:
```sh
python -m happypose.pose_estimators.megapose.scripts.run_inference_on_example barbecue-sauce --run-inference
python -m happypose.pose_estimators.megapose.scripts.run_inference_on_example barbecue-sauce --run-inference --vis-poses
```
by default, the model only uses the RGB input. You can use of our RGB-D megapose models using the `--model` argument. Please see our [Model Zoo](#model-zoo) for all models available.

The previous command will generate the following file:

```sh
$HAPPYPOSE_DATA_DIR/examples/barbecue-sauce/
outputs/object_data.json
outputs/object_data_inf.json
```
A default `object_data.json` is provided if you prefer not to run the model.

This file contains a list of objects with their estimated poses . For each object, the estimated pose is noted `TWO` (the world coordinate frame correspond to the camera frame). It is composed of a quaternion and the 3D translation:

[{"label": "barbecue-sauce", "TWO": [[0.5453961536730983, 0.6226545207599095, -0.43295293693197473, 0.35692612413663855], [0.10723329335451126, 0.07313819974660873, 0.45735278725624084]]}]

Finally, you can visualize the results using:

```sh
python -m happypose.pose_estimators.megapose.scripts.run_inference_on_example barbecue-sauce --run-inference --vis-outputs
```
which write several visualization files:
The `--vis-poses` options write several visualization files:

```sh
$HAPPYPOSE_DATA_DIR/examples/barbecue-sauce/
Expand Down
Original file line number Diff line number Diff line change
@@ -1,19 +1,22 @@
import json
from pathlib import Path
from typing import Union


class BOPObjectDataset:
def __init__(self, ds_dir):
def __init__(self, ds_dir, label_format: Union[None, str] = None):
ds_dir = Path(ds_dir)
infos_file = ds_dir / "models_info.json"
infos = json.loads(infos_file.read_text())
objects = []
for obj_id, bop_info in infos.items():
obj_id = int(obj_id)
obj_label = f"obj_{obj_id:06d}"
mesh_path = (ds_dir / obj_label).with_suffix(".ply").as_posix()
label = f"obj_{obj_id:06d}"
mesh_path = (ds_dir / label).with_suffix(".ply").as_posix()
if label_format is not None:
label = label_format.format(label=label)
obj = {
"label": obj_label,
"label": label,
"category": None,
"mesh_path": mesh_path,
"mesh_units": "mm",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,7 @@
check_update_config as check_update_config_pose,
)
from happypose.pose_estimators.cosypose.cosypose.training.pose_models_cfg import (
create_model_coarse,
create_model_refiner,
load_model_cosypose,
)
from happypose.pose_estimators.megapose.evaluation.eval_config import EvalConfig
from happypose.pose_estimators.megapose.evaluation.evaluation_runner import (
Expand Down Expand Up @@ -85,46 +84,22 @@ def load_pose_models(coarse_run_id, refiner_run_id, n_workers):
# cfg = yaml.load((run_dir / 'config.yaml').read_text(), Loader=yaml.FullLoader)
cfg = yaml.load((run_dir / "config.yaml").read_text(), Loader=yaml.UnsafeLoader)
cfg = check_update_config_pose(cfg)
# object_ds = BOPObjectDataset(BOP_DS_DIR / 'tless/models_cad')
# object_ds = make_object_dataset(cfg.object_ds_name)
# mesh_db = MeshDataBase.from_object_ds(object_ds)
# renderer = BulletBatchRenderer(
# object_set=cfg.urdf_ds_name, n_workers=n_workers, gpu_renderer=gpu_renderer
# )
#

object_dataset = make_object_dataset("ycbv")
mesh_db = MeshDataBase.from_object_ds(object_dataset)
renderer = Panda3dBatchRenderer(
object_dataset,
n_workers=n_workers,
preload_cache=False,
)
mesh_db = MeshDataBase.from_object_ds(object_dataset)
mesh_db_batched = mesh_db.batched().to(device)

def load_model(run_id):
run_dir = EXP_DIR / run_id
# cfg = yaml.load((run_dir / 'config.yaml').read_text(), Loader=yaml.FullLoader)
cfg = yaml.load((run_dir / "config.yaml").read_text(), Loader=yaml.UnsafeLoader)
cfg = check_update_config_pose(cfg)
if cfg.train_refiner:
model = create_model_refiner(
cfg,
renderer=renderer,
mesh_db=mesh_db_batched,
)
else:
model = create_model_coarse(cfg, renderer=renderer, mesh_db=mesh_db_batched)
ckpt = torch.load(run_dir / "checkpoint.pth.tar", map_location=device)
ckpt = ckpt["state_dict"]
model.load_state_dict(ckpt)
model = model.to(device).eval()
model.cfg = cfg
model.config = cfg
return model

coarse_model = load_model(coarse_run_id)
refiner_model = load_model(refiner_run_id)
coarse_model = load_model_cosypose(
EXP_DIR / coarse_run_id, renderer, mesh_db_batched, device
)
refiner_model = load_model_cosypose(
EXP_DIR / refiner_run_id, renderer, mesh_db_batched, device
)
return coarse_model, refiner_model, mesh_db


Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import time
from collections import defaultdict
from typing import Any, Optional, Tuple
from typing import Any, List, Optional, Tuple

import numpy as np
import torch
Expand All @@ -20,6 +20,7 @@
ObservationTensor,
PoseEstimatesType,
)
from happypose.toolbox.inference.utils import filter_detections
from happypose.toolbox.utils.tensor_collection import PandasTensorCollection

logger = get_logger(__name__)
Expand Down Expand Up @@ -146,6 +147,7 @@ def run_inference_pipeline(
coarse_estimates: Optional[PoseEstimatesType] = None,
detection_th: float = 0.7,
mask_th: float = 0.8,
labels_to_keep: List[str] = None,
) -> Tuple[PoseEstimatesType, dict]:
timing_str = ""
timer = SimpleTimer()
Expand Down Expand Up @@ -180,6 +182,10 @@ def run_inference_pipeline(
assert detections is not None
assert self.coarse_model is not None
assert n_coarse_iterations > 0

if labels_to_keep is not None:
detections = filter_detections(detections, labels_to_keep)

K = observation.K
data_TCO_init = self.make_TCO_init(detections, K)
coarse_preds, coarse_extra_data = self.forward_coarse_model(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@


class CoarseRefinePosePredictor(PoseEstimationModule):
# TODO: deprecate in favor of PosePredictor
def __init__(self, coarse_model=None, refiner_model=None, bsz_objects=64):
super().__init__()
self.coarse_model = coarse_model
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,11 @@ def n_sym_mapping(self):
return {label: obj["n_sym"] for label, obj in self.infos.items()}

def select(self, labels):
ids = [self.label_to_id[label] for label in labels]
try:
ids = [self.label_to_id[label] for label in labels]
except KeyError as e:
print("self.label_to_id.keys(): ", list(self.label_to_id.keys()))
raise e
return Meshes(
infos=[self.infos[label] for label in labels],
labels=self.labels[ids],
Expand Down
Loading
Loading