Skip to content

Commit

Permalink
Merge branch 'main' into autoware_msg
Browse files Browse the repository at this point in the history
  • Loading branch information
cyn-liu committed Feb 5, 2024
2 parents 2f24e69 + bee8c48 commit 7e3cdb1
Show file tree
Hide file tree
Showing 60 changed files with 529 additions and 324 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -74,3 +74,5 @@
update_steer_threshold: 0.035
average_num: 1000
steering_offset_limit: 0.02

debug_publish_predicted_trajectory: false # publish debug predicted trajectory in Frenet coordinate
5 changes: 5 additions & 0 deletions autoware_launch/config/localization/ekf_localizer.param.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
enable_yaw_bias_estimation: true
predict_frequency: 50.0
tf_rate: 50.0
publish_tf: true
extend_state_step: 50

# for Pose measurement
Expand All @@ -22,6 +23,10 @@
proc_stddev_vx_c: 10.0
proc_stddev_wz_c: 5.0

#Simple1DFilter parameters
z_filter_proc_dev: 1.0
roll_filter_proc_dev: 0.01
pitch_filter_proc_dev: 0.01
# for diagnostics
pose_no_update_count_threshold_warn: 50
pose_no_update_count_threshold_error: 100
Expand Down
160 changes: 84 additions & 76 deletions autoware_launch/config/localization/ndt_scan_matcher.param.yaml
Original file line number Diff line number Diff line change
@@ -1,106 +1,114 @@
/**:
ros__parameters:
# Use dynamic map loading
use_dynamic_map_loading: true
frame:
# Vehicle reference frame
base_frame: "base_link"

# Vehicle reference frame
base_frame: "base_link"
# NDT reference frame
ndt_base_frame: "ndt_base_link"

# NDT reference frame
ndt_base_frame: "ndt_base_link"
# Map frame
map_frame: "map"

# map frame
map_frame: "map"

# Subscriber queue size
input_sensor_points_queue_size: 1
ndt:
# The maximum difference between two consecutive
# transformations in order to consider convergence
trans_epsilon: 0.01

# The maximum difference between two consecutive
# transformations in order to consider convergence
trans_epsilon: 0.01
# The newton line search maximum step length
step_size: 0.1

# The newton line search maximum step length
step_size: 0.1
# The ND voxel grid resolution
resolution: 2.0

# The ND voxel grid resolution
resolution: 2.0
# The number of iterations required to calculate alignment
max_iterations: 30

# The number of iterations required to calculate alignment
max_iterations: 30
# Number of threads used for parallel computing
num_threads: 4

# Converged param type
# 0=TRANSFORM_PROBABILITY, 1=NEAREST_VOXEL_TRANSFORMATION_LIKELIHOOD
converged_param_type: 1
regularization:
enable: false

# If converged_param_type is 0
# Threshold for deciding whether to trust the estimation result
converged_param_transform_probability: 3.0
# Regularization scale factor
scale_factor: 0.01

# If converged_param_type is 1
# Threshold for deciding whether to trust the estimation result
converged_param_nearest_voxel_transformation_likelihood: 2.3

# The number of particles to estimate initial pose
initial_estimate_particles_num: 200
initial_pose_estimation:
# The number of particles to estimate initial pose
particles_num: 200

# The number of initial random trials in the TPE (Tree-Structured Parzen Estimator).
# This value should be equal to or less than 'initial_estimate_particles_num' and more than 0.
# If it is equal to 'initial_estimate_particles_num', the search will be the same as a full random search.
n_startup_trials: 20
# The number of initial random trials in the TPE (Tree-Structured Parzen Estimator).
# This value should be equal to or less than 'initial_estimate_particles_num' and more than 0.
# If it is equal to 'initial_estimate_particles_num', the search will be the same as a full random search.
n_startup_trials: 20

# Tolerance of timestamp difference between current time and sensor pointcloud. [sec]
lidar_topic_timeout_sec: 1.0

# Tolerance of timestamp difference between initial_pose and sensor pointcloud. [sec]
initial_pose_timeout_sec: 1.0
validation:
# Tolerance of timestamp difference between current time and sensor pointcloud. [sec]
lidar_topic_timeout_sec: 1.0

# Tolerance of distance difference between two initial poses used for linear interpolation. [m]
initial_pose_distance_tolerance_m: 10.0
# Tolerance of timestamp difference between initial_pose and sensor pointcloud. [sec]
initial_pose_timeout_sec: 1.0

# Number of threads used for parallel computing
num_threads: 4
# Tolerance of distance difference between two initial poses used for linear interpolation. [m]
initial_pose_distance_tolerance_m: 10.0

# The covariance of output pose
# Note that this covariance matrix is empirically derived
output_pose_covariance:
[
0.0225, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0225, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0225, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.000625, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.000625, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.000625,
]
# The execution time which means probably NDT cannot matches scans properly. [ms]
critical_upper_bound_exe_time_ms: 100.0

# 2D Real-time covariance estimation with multiple searches (output_pose_covariance is the minimum value)
use_covariance_estimation: false

# Offset arrangement in covariance estimation [m]
# initial_pose_offset_model_x & initial_pose_offset_model_y must have the same number of elements.
initial_pose_offset_model_x: [0.0, 0.0, 0.5, -0.5, 1.0, -1.0]
initial_pose_offset_model_y: [0.5, -0.5, 0.0, 0.0, 0.0, 0.0]
score_estimation:
# Converged param type
# 0=TRANSFORM_PROBABILITY, 1=NEAREST_VOXEL_TRANSFORMATION_LIKELIHOOD
converged_param_type: 1

# Regularization switch
regularization_enabled: false
# If converged_param_type is 0
# Threshold for deciding whether to trust the estimation result
converged_param_transform_probability: 3.0

# Regularization scale factor
regularization_scale_factor: 0.01
# If converged_param_type is 1
# Threshold for deciding whether to trust the estimation result
converged_param_nearest_voxel_transformation_likelihood: 2.3

# Dynamic map loading distance
dynamic_map_loading_update_distance: 20.0
# Scan matching score based on no ground LiDAR scan
no_ground_points:
enable: false

# Dynamic map loading loading radius
dynamic_map_loading_map_radius: 150.0
# If lidar_point.z - base_link.z <= this threshold , the point will be removed
z_margin_for_ground_removal: 0.8

# Radius of input LiDAR range (used for diagnostics of dynamic map loading)
lidar_radius: 100.0

# cspell: ignore degrounded
# A flag for using scan matching score based on de-grounded LiDAR scan
estimate_scores_for_degrounded_scan: false
covariance:
# The covariance of output pose
# Note that this covariance matrix is empirically derived
output_pose_covariance:
[
0.0225, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0225, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0225, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.000625, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.000625, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.000625,
]

# If lidar_point.z - base_link.z <= this threshold , the point will be removed
z_margin_for_ground_removal: 0.8
# 2D Real-time covariance estimation with multiple searches (output_pose_covariance is the minimum value)
covariance_estimation:
enable: false

# The execution time which means probably NDT cannot matches scans properly. [ms]
critical_upper_bound_exe_time_ms: 100
# Offset arrangement in covariance estimation [m]
# initial_pose_offset_model_x & initial_pose_offset_model_y must have the same number of elements.
initial_pose_offset_model_x: [0.0, 0.0, 0.5, -0.5, 1.0, -1.0]
initial_pose_offset_model_y: [0.5, -0.5, 0.0, 0.0, 0.0, 0.0]


dynamic_map_loading:
# Dynamic map loading distance
update_distance: 20.0

# Dynamic map loading loading radius
map_radius: 150.0

# Radius of input LiDAR range (used for diagnostics of dynamic map loading)
lidar_radius: 100.0
4 changes: 4 additions & 0 deletions autoware_launch/config/localization/twist2accel.param.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
/**:
ros__parameters:
use_odom: true
accel_lowpass_gain: 0.9
4 changes: 4 additions & 0 deletions autoware_launch/config/map/map_projection_loader.param.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
/**:
ros__parameters:
map_projector_info_path: $(var map_projector_info_path)
lanelet2_map_path: $(var lanelet2_map_path)
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@
enable_whole_load: true
enable_downsampled_whole_load: false
enable_partial_load: true
enable_differential_load: true
enable_selected_load: false

# only used when downsample_whole_load enabled
Expand Down
Original file line number Diff line number Diff line change
@@ -1,11 +1,10 @@
/**:
ros__parameters:
tracker_ignore_label:
UNKNOWN : true
CAR : false
TRUCK : false
BUS : false
TRAILER : false
MOTORCYCLE : false
BICYCLE : false
PEDESTRIAN : false
tracker_ignore_label.UNKNOWN : true
tracker_ignore_label.CAR : false
tracker_ignore_label.TRUCK : false
tracker_ignore_label.BUS : false
tracker_ignore_label.TRAILER : false
tracker_ignore_label.MOTORCYCLE : false
tracker_ignore_label.BICYCLE : false
tracker_ignore_label.PEDESTRIAN : false
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
/**:
ros__parameters:
fusion_distance: 100.0
trust_object_distance: 100.0
trust_object_iou_mode: "iou"
non_trust_object_iou_mode: "iou_x"
use_cluster_semantic_type: false
only_allow_inside_cluster: true
roi_scale_factor: 1.1
iou_threshold: 0.65
unknown_iou_threshold: 0.1
remove_unknown: false
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
/**:
ros__parameters:
# UNKNOWN, CAR, TRUCK, BUS, TRAILER, MOTORBIKE, BICYCLE, PEDESTRIAN
passthrough_lower_bound_probability_thresholds: [0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.50]
trust_distances: [50.0, 100.0, 100.0, 100.0, 100.0, 50.0, 50.0, 50.0]
min_iou_threshold: 0.5
use_roi_probability: false
roi_probability_threshold: 0.5

can_assign_matrix:
#UNKNOWN, CAR, TRUCK, BUS, TRAILER, MOTORBIKE, BICYCLE, PEDESTRIAN <-roi_msg
[1, 0, 0, 0, 0, 0, 0, 0, # UNKNOWN <-detected_objects
0, 1, 1, 1, 1, 0, 0, 0, # CAR
0, 1, 1, 1, 1, 0, 0, 0, # TRUCK
0, 1, 1, 1, 1, 0, 0, 0, # BUS
0, 1, 1, 1, 1, 0, 0, 0, # TRAILER
0, 0, 0, 0, 0, 1, 1, 1, # MOTORBIKE
0, 0, 0, 0, 0, 1, 1, 1, # BICYCLE
0, 0, 0, 0, 0, 1, 1, 1] # PEDESTRIAN
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
/**:
ros__parameters:
fuse_unknown_only: true
min_cluster_size: 2
cluster_2d_tolerance: 0.5
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@
input_offset_ms: [61.67, 111.67, 45.0, 28.33, 78.33, 95.0]
timeout_ms: 70.0
match_threshold_ms: 50.0
image_buffer_size: 15
debug_mode: false
filter_scope_min_x: -100.0
filter_scope_min_y: -100.0
filter_scope_min_z: -100.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,9 @@
max_area_matrix:
#UNKNOWN, CAR, TRUCK, BUS, TRAILER, MOTORBIKE, BICYCLE, PEDESTRIAN
[ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, #UNKNOWN
0.000, 0.000, 36.000, 0.000, inf, 0.000, 0.000, 0.000, #CAR
0.000, 0.000, 0.000, 0.000, inf, 0.000, 0.000, 0.000, #TRUCK
0.000, 0.000, 0.000, 0.000, inf, 0.000, 0.000, 0.000, #BUS
0.000, 0.000, 36.000, 0.000, 999.999, 0.000, 0.000, 0.000, #CAR
0.000, 0.000, 0.000, 0.000, 999.999, 0.000, 0.000, 0.000, #TRUCK
0.000, 0.000, 0.000, 0.000, 999.999, 0.000, 0.000, 0.000, #BUS
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, #TRAILER
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, #MOTORBIKE
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, #BICYCLE
Expand Down
Original file line number Diff line number Diff line change
@@ -1,18 +1,33 @@
/**:
ros__parameters:
class_names: ["CAR", "TRUCK", "BUS", "BICYCLE", "PEDESTRIAN"]
paint_class_names: ["CAR", "BICYCLE", "PEDESTRIAN"]
point_feature_size: 7 # x, y, z, time-lag and car, pedestrian, bicycle
max_voxel_size: 40000
point_cloud_range: [-121.6, -76.8, -3.0, 121.6, 76.8, 5.0]
voxel_size: [0.32, 0.32, 8.0]
downsample_factor: 1
encoder_in_feature_size: 12
yaw_norm_thresholds: [0.3, 0.3, 0.3, 0.3, 0.0]
# post-process params
circle_nms_dist_threshold: 0.3
iou_nms_target_class_names: ["CAR"]
iou_nms_search_distance_2d: 10.0
iou_nms_threshold: 0.1
# omp params
omp_num_threads: 1
trt_precision: fp16
build_only: false
encoder_onnx_path: "$(var model_path)/pts_voxel_encoder_$(var model_name).onnx"
encoder_engine_path: "$(var model_path)/pts_voxel_encoder_$(var model_name).engine"
head_onnx_path: "$(var model_path)/pts_backbone_neck_head_$(var model_name).onnx"
head_engine_path: "$(var model_path)/pts_backbone_neck_head_$(var model_name).engine"

model_params:
class_names: ["CAR", "TRUCK", "BUS", "BICYCLE", "PEDESTRIAN"]
paint_class_names: ["CAR", "BICYCLE", "PEDESTRIAN"]
point_feature_size: 7 # x, y, z, time-lag and car, pedestrian, bicycle
max_voxel_size: 40000
point_cloud_range: [-121.6, -76.8, -3.0, 121.6, 76.8, 5.0]
voxel_size: [0.32, 0.32, 8.0]
downsample_factor: 1
encoder_in_feature_size: 12
yaw_norm_thresholds: [0.3, 0.3, 0.3, 0.3, 0.0]
has_twist: false
densification_params:
world_frame_id: "map"
num_past_frames: 0
post_process_params:
# post-process params
circle_nms_dist_threshold: 0.3
iou_nms_target_class_names: ["CAR"]
iou_nms_search_distance_2d: 10.0
iou_nms_threshold: 0.1
score_threshold: 0.4
omp_params:
# omp params
num_threads: 1
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
/**:
ros__parameters:
split_range: 80.0
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
/**:
ros__parameters:
split_range: 70.0
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
/**:
ros__parameters:
velocity_threshold: 5.5
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
/**:
ros__parameters:
velocity_threshold: 4.5
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
/**:
ros__parameters:
angle_threshold: 1.2210
velocity_threshold: 1.5
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,13 @@
sigma_yaw_angle_deg: 5.0 #[angle degree]
object_buffer_time_length: 2.0 #[s]
history_time_length: 1.0 #[s]
check_lateral_acceleration_constraints: false # whether to check if the predicted path complies with lateral acceleration constraints
max_lateral_accel: 2.0 # [m/ss] max acceptable lateral acceleration for predicted vehicle paths
min_acceleration_before_curve: -2.0 # [m/ss] min acceleration a vehicle might take to decelerate before a curve
use_vehicle_acceleration: false # whether to consider current vehicle acceleration when predicting paths or not
speed_limit_multiplier: 1.5 # When using vehicle acceleration. Set vehicle's maximum predicted speed as the legal speed limit in that lanelet times this value
acceleration_exponential_half_life: 2.5 # [s] When using vehicle acceleration. The decaying acceleration model considers that the current vehicle acceleration will be halved after this many seconds
use_crosswalk_signal: true
# parameter for shoulder lane prediction
prediction_time_horizon_rate_for_validate_shoulder_lane_length: 0.8

Expand Down
Loading

0 comments on commit 7e3cdb1

Please sign in to comment.