-
Notifications
You must be signed in to change notification settings - Fork 32
Tutorial 4: Prepare the Population Configuration
Jie Luo edited this page Jan 24, 2021
·
3 revisions
Here we will learn how to repare the Population Configuration for an experiment.
- Within the project root create an empty file
tutorial4.py
. - Make sure it is executable:
sudo chmod +x tutorial4.py
- Open the file with a text editor, add this piece of a code to the script and save it
#!/usr/bin/env python3
from pyrevolve import parser
from pyrevolve.evolution import fitness
from pyrevolve.evolution.selection import multiple_selection, tournament_selection
from pyrevolve.evolution.population import Population, PopulationConfig
from pyrevolve.evolution.pop_management.steady_state import steady_state_population_management
from pyrevolve.experiment_management import ExperimentManagement
from pyrevolve.genotype.plasticoding.crossover.crossover import CrossoverConfig
from pyrevolve.genotype.plasticoding.crossover.standard_crossover import standard_crossover
from pyrevolve.genotype.plasticoding.initialization import random_initialization
from pyrevolve.genotype.plasticoding.mutation.mutation import MutationConfig
from pyrevolve.genotype.plasticoding.mutation.standard_mutation import standard_mutation
from pyrevolve.genotype.plasticoding.plasticoding import PlasticodingConfig
async def run():
# Define the size
population_size = 20
offspring_size = 10
# Define the maximum number of structural modules per robot
genotype_conf = PlasticodingConfig(
max_structural_modules=100
)
# Define the mutation probability
mutation_conf = MutationConfig(
mutation_prob=0.8,
genotype_conf=genotype_conf,
)
# Define the Crossover probability
crossover_conf = CrossoverConfig(
crossover_prob=0.8,
)
# Parse command line / file input arguments
settings = parser.parse_args()
experiment_management = ExperimentManagement(settings)
# Insert the population parameters PopulationConfig:
# Creates a PopulationConfig object that sets the particular configuration for the population
#
# :param population_size: size of the population
# :param genotype_constructor: class of the genotype used
# :param genotype_conf: configuration for genotype constructor
# :param fitness_function: function that takes in a `RobotManager` as a parameter and produces a fitness for the robot
# :param mutation_operator: operator to be used in mutation
# :param mutation_conf: configuration for mutation operator
# :param crossover_operator: operator to be used in crossover
# :param selection: selection type
# :param parent_selection: selection type during parent selection
# :param population_management: type of population management ie. steady state or generational
# :param evaluation_time: duration of an experiment
# :param experiment_name: name for the folder of the current experiment
# :param experiment_management: object with methods for managing the current experiment
# :param offspring_size (optional): size of offspring (for steady state)
population_conf = PopulationConfig(
population_size=population_size,
genotype_constructor=random_initialization,
genotype_conf=genotype_conf,
fitness_function=fitness.displacement_velocity,
mutation_operator=standard_mutation,
mutation_conf=mutation_conf,
crossover_operator=standard_crossover,
crossover_conf=crossover_conf,
selection=lambda individuals: tournament_selection(individuals, 2),
parent_selection=lambda individuals: multiple_selection(individuals, 2, tournament_selection),
population_management=steady_state_population_management,
population_management_selector=tournament_selection,
evaluation_time=settings.evaluation_time,
offspring_size=offspring_size,
experiment_name=settings.experiment_name,
experiment_management=experiment_management
)
- Run the script:
(.venv) ./revolve.py --simulator-cmd=gazebo --manager ./tutorial4.py
You should get an output like this:
STARTING
FINISHED
See next: Tutorial 5: Setting up experiments
For more information about the Triangle of Life concept visit http://evosphere.eu/.
_________________
/ Premature \
| optimization |
| is the root of |
| all evil. |
| |
\ -- D.E. Knuth /
-----------------
\ ^__^
\ (oo)\_______
(__)\ )\/\
||----w |
|| ||