- This repository is to use the FrankMocap easier.. (MAYBE)
- Disclaimer: This repo. would be outdated since FrankMocap is updated and we forgot the fork the previous version. Please visit "youtube_frankmocap" instead.
- Prepare Ubuntu 18.04+ and Anaconda
- Clone this Repository and FrankMocap
git clone https://github.com/cotton-ahn/frankmocap_notebooks
cd frankmocap_notebooks
git clone https://github.com/facebookresearch/frankmocap
- Install the FrankMocap as the official document says
- When installing, you may face error related to "opendr" installation
- If ERRROR MSG goes like
- Collect2: error: ld returned 1 exit status // Error: command ‘gcc’ failed with exit status 1
- TRY below line : source
sudo apt-get install libosmesa6-dev
- Try to run below to check whether the result is valid.
cd ./frankmocap
conda activate venv_frankmocap
python -m demo.demo_bodymocap --input_path ./sample_data/han_short.mp4 --out_dir ./mocap_output
- Replace ./copy_and_paste.py and ./demo_frankmocap.py
cd $(THIS REPOSITORY)
cp ./copy_and_paste.py ./frankmocap/integration
cp ./demo_frankmocap.py ./frankmocap/demo
- Prepare the jupyter notebook, and add the venv_frankmocap to the ipykernel
pip install ipykernel jupyter
python -m ipykernel install --user --name=venv_frankmocap
- Install moviepy
pip install moviepy
- Run Jupyter Notebook in this repository
cd $(THIS REPOSITORY)
jupyter notebook
- Put videos that you want to process, to ./videos (config.video_dir)
- Or, you can write down the YouTube Links on ./video_url.txt
- Then, Run 00_process_youtube_videos.ipynb
- Videos will be saved to ./videos, image frames will be saved to ./images (config.image_dir)
- Run 01_extract_mocap_results.
- Results will be saved to ./mocaps (config.mocap_dir)
- If config.read_type == 'videos', video files in ./videos will be used as inputs to the frankmocap
- If config.read_type == 'images', images in ./images will be used as inputs to the frankmocap
- In ./mocaps, folders with video's name will be generated, and results will be saved.
- Results will be saved to ./mocaps (config.mocap_dir)
- Run 02_preprocess_mocap_result
- This notebook organizes results into some .pkl and .npz files.
- .pkl files will be saved to ./skeletons_pkl (config.skeletons_pkl_dir)
- .npz files will be saved to ./skeletons_npz (config.skeletons_npz_dir)
- See the result with 03_visualize_processed_pkl_and_npz.
- After loading pickle file, you will see the dictionary
- KEY : 'open_pose', 'aux_pose', 'simple_pose', 'left_hand', 'right_hand', 'hand_info', 'heel_info', 'head_info'
- Try to check the pickle file by yourself.
- After loading .npz file, you will see an 87-dimensional array.
- 0 ~ 45 (45) : 'simple_pose' in pickle file, the pose which size was 15 by 3
- 45~ 51 (6) : (3) head pose (3) head orientation
- 51 ~ 63 (12): left hand thumb vector(3), index vector(3), palm vector(3), wrist pos(3)
- 63 ~ 75 (12): right hand thumb vector(3), index vector(3), palm vector(3), wrist pos(3)
- 75 ~ 87 (12): left heel pos (3), left foot vec (3), right heel pos (3), right foot vec (3)
- After loading pickle file, you will see the dictionary