Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding a python http_request wrapper to create external tools #28

Merged
merged 2 commits into from
Dec 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 57 additions & 0 deletions src/databricks_ai_bridge/external_tools.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import json as js
from typing import Any, Dict, Optional

import requests
from databricks.sdk import WorkspaceClient

from databricks_ai_bridge.utils.annotations import experimental


@experimental
def http_request(
conn: str,
method: str,
path: str,
*,
json: Optional[Any] = None,
headers: Optional[Dict[str, str]] = None,
params: Optional[Dict[str, Any]] = None,
) -> requests.Response:
"""
Makes an HTTP request to a remote API using authentication from a Unity Catalog HTTP connection.

Args:
conn (str): The connection name to use. This is required to identify the external connection.
method (str): The HTTP method to use (e.g., "GET", "POST"). This is required.
path (str): The relative path for the API endpoint. This is required.
json (Optional[Any]): JSON payload for the request.
headers (Optional[Dict[str, str]]): Additional headers for the request.
If not provided, only auth headers from connections would be passed.
params (Optional[Dict[str, Any]]): Query parameters for the request.

Returns:
requests.Response: The HTTP response from the external function.

Example Usage:
response = http_request(
conn="my_connection",
method="POST",
path="/api/v1/resource",
json={"key": "value"},
headers={"extra_header_key": "extra_header_value"},
params={"query": "example"}
)
"""
workspaceConfig = WorkspaceClient().config
url = f"{workspaceConfig.host}/external-functions"
request_headers = workspaceConfig._header_factory()
payload = {
"connection_name": conn,
"method": method,
"path": path,
"json": js.dumps(json),
"header": headers,
"params": params,
}

return requests.post(url, headers=request_headers, json=payload)
67 changes: 67 additions & 0 deletions src/databricks_ai_bridge/utils/annotations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# This code is copied from MLflow: https://github.com/mlflow/mlflow/blob/v2.19.0/mlflow/utils/annotations.py#L31

import inspect
sunishsheth2009 marked this conversation as resolved.
Show resolved Hide resolved
import re
import types
from typing import Any, Callable, TypeVar, Union

C = TypeVar("C", bound=Callable[..., Any])


def _get_min_indent_of_docstring(docstring_str: str) -> str:
"""
Get the minimum indentation string of a docstring, based on the assumption
that the closing triple quote for multiline comments must be on a new line.
Note that based on ruff rule D209, the closing triple quote for multiline
comments must be on a new line.

Args:
docstring_str: string with docstring

Returns:
Whitespace corresponding to the indent of a docstring.
"""

if not docstring_str or "\n" not in docstring_str:
return ""

return re.match(r"^\s*", docstring_str.rsplit("\n", 1)[-1]).group()


def experimental(api_or_type: Union[C, str]) -> C:
"""Decorator / decorator creator for marking APIs experimental in the docstring.

Args:
api_or_type: An API to mark, or an API typestring for which to generate a decorator.

Returns:
Decorated API (if a ``api_or_type`` is an API) or a function that decorates
the specified API type (if ``api_or_type`` is a typestring).
"""
if isinstance(api_or_type, str):

def f(api: C) -> C:
return _experimental(api=api, api_type=api_or_type)

return f
elif inspect.isclass(api_or_type):
return _experimental(api=api_or_type, api_type="class")
elif inspect.isfunction(api_or_type):
return _experimental(api=api_or_type, api_type="function")
elif isinstance(api_or_type, (property, types.MethodType)):
return _experimental(api=api_or_type, api_type="property")
else:
return _experimental(api=api_or_type, api_type=str(type(api_or_type)))


def _experimental(api: C, api_type: str) -> C:
indent = _get_min_indent_of_docstring(api.__doc__)
notice = (
indent + f".. Note:: Experimental: This {api_type} may change or "
"be removed in a future release without warning.\n\n"
)
if api_type == "property":
api.__doc__ = api.__doc__ + "\n\n" + notice if api.__doc__ else notice
else:
api.__doc__ = notice + api.__doc__ if api.__doc__ else notice
return api
89 changes: 89 additions & 0 deletions tests/databricks_ai_bridge/test_external_tools.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
from unittest.mock import MagicMock, patch

from databricks_ai_bridge.external_tools import http_request


@patch("databricks_ai_bridge.external_tools.WorkspaceClient")
@patch("databricks_ai_bridge.external_tools.requests.post")
def test_http_request_success(mock_post, mock_workspace_client):
# Mock the WorkspaceClient config
mock_workspace_config = MagicMock()
mock_workspace_config.host = "https://mock-host"
mock_workspace_config._header_factory.return_value = {"Authorization": "Bearer mock-token"}
mock_workspace_client.return_value.config = mock_workspace_config

# Mock the POST request
mock_response = MagicMock()
mock_response.status_code = 200
mock_response.json.return_value = {"success": True}
mock_post.return_value = mock_response

# Call the function
response = http_request(
conn="mock_connection",
method="POST",
path="/mock-path",
json={"key": "value"},
headers={"Custom-Header": "HeaderValue"},
params={"query": "test"},
)

# Assertions
assert response.status_code == 200
assert response.json() == {"success": True}
mock_post.assert_called_once_with(
"https://mock-host/external-functions",
headers={
"Authorization": "Bearer mock-token",
},
json={
"connection_name": "mock_connection",
"method": "POST",
"path": "/mock-path",
"json": '{"key": "value"}',
"header": {
"Custom-Header": "HeaderValue",
},
"params": {"query": "test"},
},
)


@patch("databricks_ai_bridge.external_tools.WorkspaceClient")
@patch("databricks_ai_bridge.external_tools.requests.post")
def test_http_request_error_response(mock_post, mock_workspace_client):
# Mock the WorkspaceClient config
mock_workspace_config = MagicMock()
mock_workspace_config.host = "https://mock-host"
mock_workspace_config._header_factory.return_value = {"Authorization": "Bearer mock-token"}
mock_workspace_client.return_value.config = mock_workspace_config

# Mock the POST request to return an error
mock_response = MagicMock()
mock_response.status_code = 400
mock_response.json.return_value = {"error": "Bad Request"}
mock_post.return_value = mock_response

# Call the function
response = http_request(
conn="mock_connection",
method="POST",
path="/mock-path",
json={"key": "value"},
)

# Assertions
assert response.status_code == 400
assert response.json() == {"error": "Bad Request"}
mock_post.assert_called_once_with(
"https://mock-host/external-functions",
headers={"Authorization": "Bearer mock-token"},
json={
"connection_name": "mock_connection",
"method": "POST",
"path": "/mock-path",
"json": '{"key": "value"}',
"header": None,
"params": None,
},
)
Loading