Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make Document Stores initially skip SparseEmbedding #606

Merged
merged 1 commit into from
Mar 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,15 @@ def _convert_input_document(document: Union[dict, Document]):
document_dict["dataframe"] = document_dict.pop("dataframe").to_json()
if embedding := document_dict.pop("embedding", []):
document_dict["$vector"] = embedding
if "sparse_embedding" in document_dict:
sparse_embedding = document_dict.pop("sparse_embedding", None)
if sparse_embedding:
logger.warning(
"Document %s has the `sparse_embedding` field set,"
"but storing sparse embeddings in Astra is not currently supported."
"The `sparse_embedding` field will be ignored.",
document_dict["_id"],
)

return document_dict

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -189,6 +189,14 @@ def write_documents(self, documents: List[Document], policy: DuplicatePolicy = D
if doc.embedding is not None:
data["embeddings"] = [doc.embedding]

if hasattr(doc, "sparse_embedding") and doc.sparse_embedding is not None:
logger.warning(
"Document %s has the `sparse_embedding` field set,"
"but storing sparse embeddings in Chroma is not currently supported."
"The `sparse_embedding` field will be ignored.",
doc.id,
)

self._collection.add(**data)

return len(documents)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -216,16 +216,30 @@ def write_documents(self, documents: List[Document], policy: DuplicatePolicy = D
policy = DuplicatePolicy.FAIL

action = "index" if policy == DuplicatePolicy.OVERWRITE else "create"
documents_written, errors = helpers.bulk(
client=self._client,
actions=(

elasticsearch_actions = []
for doc in documents:
doc_dict = doc.to_dict()
if "sparse_embedding" in doc_dict:
sparse_embedding = doc_dict.pop("sparse_embedding", None)
if sparse_embedding:
logger.warning(
"Document %s has the `sparse_embedding` field set,"
"but storing sparse embeddings in Elasticsearch is not currently supported."
"The `sparse_embedding` field will be ignored.",
doc.id,
)
elasticsearch_actions.append(
{
"_op_type": action,
"_id": doc.id,
"_source": doc.to_dict(),
"_source": doc_dict,
}
for doc in documents
),
)

documents_written, errors = helpers.bulk(
client=self._client,
actions=elasticsearch_actions,
refresh="wait_for",
index=self._index,
raise_on_error=False,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,19 @@ def write_documents(self, documents: List[Document], policy: DuplicatePolicy = D
if policy == DuplicatePolicy.NONE:
policy = DuplicatePolicy.FAIL

mongo_documents = [doc.to_dict(flatten=False) for doc in documents]
mongo_documents = []
for doc in documents:
doc_dict = doc.to_dict(flatten=False)
if "sparse_embedding" in doc_dict:
sparse_embedding = doc_dict.pop("sparse_embedding", None)
if sparse_embedding:
logger.warning(
"Document %s has the `sparse_embedding` field set,"
"but storing sparse embeddings in MongoDB Atlas is not currently supported."
"The `sparse_embedding` field will be ignored.",
doc.id,
)
mongo_documents.append(doc_dict)
operations: List[Union[UpdateOne, InsertOne, ReplaceOne]]
written_docs = len(documents)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -415,6 +415,16 @@ def _from_haystack_to_pg_documents(documents: List[Document]) -> List[Dict[str,
db_document["dataframe"] = Jsonb(db_document["dataframe"]) if db_document["dataframe"] else None
db_document["meta"] = Jsonb(db_document["meta"])

if "sparse_embedding" in db_document:
sparse_embedding = db_document.pop("sparse_embedding", None)
if sparse_embedding:
logger.warning(
"Document %s has the `sparse_embedding` field set,"
"but storing sparse embeddings in Pgvector is not currently supported."
"The `sparse_embedding` field will be ignored.",
db_document["id"],
)

db_documents.append(db_document)

return db_documents
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -292,6 +292,13 @@ def _convert_documents_to_pinecone_format(self, documents: List[Document]) -> Li
"objects in Pinecone is not supported. "
"The content of the `blob` field will be ignored."
)
if hasattr(document, "sparse_embedding") and document.sparse_embedding is not None:
logger.warning(
"Document %s has the `sparse_embedding` field set,"
"but storing sparse embeddings in Pinecone is not currently supported."
"The `sparse_embedding` field will be ignored.",
document.id,
)

documents_for_pinecone.append(doc_for_pinecone)
return documents_for_pinecone
Original file line number Diff line number Diff line change
@@ -1,9 +1,12 @@
import logging
import uuid
from typing import List, Union

from haystack.dataclasses import Document
from qdrant_client.http import models as rest

logger = logging.getLogger(__name__)


class HaystackToQdrant:
"""A converter from Haystack to Qdrant types."""
Expand All @@ -22,6 +25,17 @@ def documents_to_batch(
vector = payload.pop(embedding_field) or {}
_id = self.convert_id(payload.get("id"))

# TODO: remove as soon as we introduce the support for sparse embeddings in Qdrant
if "sparse_embedding" in payload:
sparse_embedding = payload.pop("sparse_embedding", None)
if sparse_embedding:
logger.warning(
"Document %s has the `sparse_embedding` field set,"
"but storing sparse embeddings in Qdrant is not currently supported."
"The `sparse_embedding` field will be ignored.",
payload["id"],
)

point = rest.PointStruct(
payload=payload,
vector=vector,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import base64
import datetime
import json
import logging
from dataclasses import asdict
from typing import Any, Dict, List, Optional, Tuple, Union

Expand All @@ -21,6 +22,8 @@
from ._filters import convert_filters
from .auth import AuthCredentials

logger = logging.getLogger(__name__)

Number = Union[int, float]
TimeoutType = Union[Tuple[Number, Number], Number]

Expand Down Expand Up @@ -224,6 +227,16 @@ def _to_data_object(self, document: Document) -> Dict[str, Any]:
# The embedding vector is stored separately from the rest of the data
del data["embedding"]

if "sparse_embedding" in data:
sparse_embedding = data.pop("sparse_embedding", None)
if sparse_embedding:
logger.warning(
"Document %s has the `sparse_embedding` field set,"
"but storing sparse embeddings in Weaviate is not currently supported."
"The `sparse_embedding` field will be ignored.",
data["_original_id"],
)

return data

def _to_document(self, data: DataObject[Dict[str, Any], None]) -> Document:
Expand Down