Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added Half-Normal & Log-Normal Distributions #1063

Merged
merged 3 commits into from
Jul 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions pomegranate/distributions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,3 +11,5 @@
from .student_t import StudentT
from .uniform import Uniform
from .zero_inflated import ZeroInflated
from .lognormal import LogNormal
from .halfnormal import HalfNormal
220 changes: 220 additions & 0 deletions pomegranate/distributions/halfnormal.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,220 @@
# normal.py
# Contact: Jacob Schreiber <[email protected]>

import torch

from .._utils import _cast_as_tensor
from .._utils import _cast_as_parameter
from .._utils import _update_parameter
from .._utils import _check_parameter
from .._utils import _check_shapes

from ._distribution import Distribution
from .normal import Normal


# Define some useful constants
LOG_2 = 0.6931471805599453


class HalfNormal(Normal):
"""A half-normal distribution object.

A half-normal distribution is a distribution over positive real numbers that
is zero for negative numbers. It is defined by a single parameter, sigma,
which is the standard deviation of the distribution. The mean of the
distribution is sqrt(2/pi) * sigma, and the variance is (1 - 2/pi) * sigma^2.

This distribution can assume that features are independent of the others if
the covariance type is 'diag' or 'sphere', but if the type is 'full' then
the features are not independent.

There are two ways to initialize this object. The first is to pass in
the tensor of probablity parameters, at which point they can immediately be
used. The second is to not pass in the rate parameters and then call
either `fit` or `summarize` + `from_summaries`, at which point the probability
parameter will be learned from data.


Parameters
----------
covs: list, numpy.ndarray, torch.Tensor, or None, optional
The variances and covariances of the distribution. If covariance_type
is 'full', the shape should be (self.d, self.d); if 'diag', the shape
should be (self.d,); if 'sphere', it should be (1,). Note that this is
the variances or covariances in all settings, and not the standard
deviation, as may be more common for diagonal covariance matrices.
Default is None.

covariance_type: str, optional
The type of covariance matrix. Must be one of 'full', 'diag', or
'sphere'. Default is 'full'.

min_cov: float or None, optional
The minimum variance or covariance.

inertia: float, [0, 1], optional
Indicates the proportion of the update to apply to the parameters
during training. When the inertia is 0.0, the update is applied in
its entirety and the previous parameters are ignored. When the
inertia is 1.0, the update is entirely ignored and the previous
parameters are kept, equivalently to if the parameters were frozen.

frozen: bool, optional
Whether all the parameters associated with this distribution are frozen.
If you want to freeze individual pameters, or individual values in those
parameters, you must modify the `frozen` attribute of the tensor or
parameter directly. Default is False.
"""

def __init__(
self,
covs=None,
covariance_type="full",
min_cov=None,
inertia=0.0,
frozen=False,
check_data=True,
):
self.name = "HalfNormal"
super().__init__(
means=None,
covs=covs,
min_cov=min_cov,
covariance_type=covariance_type,
inertia=inertia,
frozen=frozen,
check_data=check_data,
)

def _initialize(self, d):
"""Initialize the probability distribution.

This method is meant to only be called internally. It initializes the
parameters of the distribution and stores its dimensionality. For more
complex methods, this function will do more.


Parameters
----------
d: int
The dimensionality the distribution is being initialized to.
"""
super()._initialize(d)

def _reset_cache(self):
"""Reset the internally stored statistics.

This method is meant to only be called internally. It resets the
stored statistics used to update the model parameters as well as
recalculates the cached values meant to speed up log probability
calculations.
"""
super()._reset_cache()

def sample(self, n):
"""Sample from the probability distribution.

This method will return `n` samples generated from the underlying
probability distribution.


Parameters
----------
n: int
The number of samples to generate.


Returns
-------
X: torch.tensor, shape=(n, self.d)
Randomly generated samples.
"""
if self.covariance_type in ["diag", "full"]:
return torch.distributions.HalfNormal(self.covs).sample([n])

def log_probability(self, X):
"""Calculate the log probability of each example.

This method calculates the log probability of each example given the
parameters of the distribution. The examples must be given in a 2D
format.

Note: This differs from some other log probability calculation
functions, like those in torch.distributions, because it is not
returning the log probability of each feature independently, but rather
the total log probability of the entire example.


Parameters
----------
X: list, tuple, numpy.ndarray, torch.Tensor, shape=(-1, self.d)
A set of examples to evaluate.


Returns
-------
logp: torch.Tensor, shape=(-1,)
The log probability of each example.
"""

X = _check_parameter(
_cast_as_tensor(X, dtype=self.covs.dtype),
"X",
ndim=2,
shape=(-1, self.d),
check_parameter=self.check_data,
)
return super().log_probability(X) + LOG_2

def summarize(self, X, sample_weight=None):
"""Extract the sufficient statistics from a batch of data.

This method calculates the sufficient statistics from optionally
weighted data and adds them to the stored cache. The examples must be
given in a 2D format. Sample weights can either be provided as one
value per example or as a 2D matrix of weights for each feature in
each example.


Parameters
----------
X: list, tuple, numpy.ndarray, torch.Tensor, shape=(-1, self.d)
A set of examples to summarize.

sample_weight: list, tuple, numpy.ndarray, torch.Tensor, optional
A set of weights for the examples. This can be either of shape
(-1, self.d) or a vector of shape (-1,). Default is ones.
"""

super().summarize(X, sample_weight=sample_weight)

def from_summaries(self):
"""Update the model parameters given the extracted statistics.

This method uses calculated statistics from calls to the `summarize`
method to update the distribution parameters. Hyperparameters for the
update are passed in at initialization time.

Note: Internally, a call to `fit` is just a successive call to the
`summarize` method followed by the `from_summaries` method.
"""

if self.frozen == True:
return

# the means are always zero for a half normal distribution
means = torch.zeros(self.d, dtype=self.covs.dtype)

if self.covariance_type == "full":
v = self._xw_sum.unsqueeze(0) * self._xw_sum.unsqueeze(1)
covs = self._xxw_sum / self._w_sum - v / self._w_sum**2.0

elif self.covariance_type in ["diag", "sphere"]:
covs = self._xxw_sum / self._w_sum - self._xw_sum**2.0 / self._w_sum**2.0
if self.covariance_type == "sphere":
covs = covs.mean(dim=-1)

_update_parameter(self.covs, covs, self.inertia)
_update_parameter(self.means, means, self.inertia)
self._reset_cache()
Loading