###ScreenBEAM
ScreenBEAM is an R package to do gene-level meta-anlaysis of high-throughput functional genomics RNAi or CRISPR screening data. Both microarray and NGS data are supported. f you find this package useful, please cite the following paper:
Yu J, Silva, J, Califano A. ScreenBEAM: a Novel Meta-Analysis Algorithm for Functional Genomics Screens via Bayesian Hierarchical Modeling. _Bioinformatics, 2015 Sep 28. pii: btv556. link
Install ScreenBEAM from its GitHub repository. You first need to install devtools package.
install.packages(c("devtools"))
Install required Biobase package from Bioconductor.
source("http://bioconductor.org/biocLite.R")
biocLite("Biobase")
Then install R/ScreenBEAM using the install_github
function in the
devtools package.
library(devtools)
install_github("jyyu/ScreenBEAM")
Input file format for ScreenBEAM is tab-separated text file with "sh/sgRNA_Id", "gene id or symbol" as the first two columns, followed by the samples. Examples are below:
- [NGS count data] (https://github.com/jyyu/ScreenBEAM/blob/master/inst/extdata/NGS.example.tsv)
- [Microarray log2-transformed data] (https://github.com/jyyu/ScreenBEAM/blob/master/inst/extdata/microarray.example.tsv)
Try the following example to apply ScreenBEAM on NGS or microarry data. A data.frame with all statistical results is returned.
library(ScreenBEAM)
###NGS data
r<-ScreenBEAM(
###input format
input.file=system.file("extdata", "NGS.example.tsv", package = "ScreenBEAM")#tab-separted file
,
control.samples=c('T0_A','T0_B','T0_C')#column names of control samples
,
case.samples=c('T16_A','T16_B','T16_C')#column names of case/treated samples
,
control.groupname='T0'#name your control group
,
case.groupname='T16'#name your case group
,
###data pre-processing
data.type='NGS'#data type
,
do.normalization=TRUE
,
filterLowCount=TRUE
,
filterBy = 'control'
,
count.cutoff=4
,
###Bayesian computing
nitt=1500,#number of MCMC iterations, use small number here for testing, please use larger number in real data, 15000 is default
burnin=500#number of burnin in MCMC sampling, 5000 is default
)
###microarray data
r<-ScreenBEAM(
###input format
input.file=system.file("extdata", "microarray.example.tsv", package = "ScreenBEAM")#tab-separted file
,
control.samples=c('T0_A','T0_B','T0_C')#column names of control samples
,
case.samples=c('T16_A','T16_B','T16_C')#column names of case/treated samples
,
control.groupname='T0'#name your control group
,
case.groupname='T16'#name your case group
,
###data pre-processing
data.type='microarray'#data type
,
do.normalization=FALSE#assuming the microarry data is normalized
,
###Bayesian computing
nitt=1500,#number of MCMC iterations, use small number here for testing, please use larger number in real data, 15000 is default
burnin=500#number of burnin in MCMC sampling, 5000 is default
)
head(r)
###save your results
write.csv(r,file=file.path('results.ScreenBEAM.csv'),row.names=FALSE,na='')
https://groups.google.com/d/forum/screenbeam
Licensed under the MIT license. (More information here.)