Skip to content

mengxinxiaobaihy/MAML

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Air Quality Prediction Benchmark

This is Pytorch implementation of baselines in air quality prediction domain with the following paper:

  1. LSTM: models/lstm
  2. CNN-LSTM: models/cnn-lstm
  3. GA-Encoder-Decoder: models/encoder-decoder
  4. GC-LSTM: models/gc-lstm
  5. SpAttRNN: models/spattrnn
  6. AC-LSTM: models/ac-lstm
  7. GeoMAN: models/geoman
  8. MAGAN: models/magan
  9. IMDA-VAE: models/imda-vae
  10. DAQFF: models/daqff
  11. Multitask LSTM Autoencoder: models/mlae

Note to run wandb sweep

Follow https://docs.wandb.ai/guides/sweeps/quickstart

  1. Define cac tham so can chay trong wandb_config
  2. Tao sweep instance wandb sweep link_to_wandb_config.yaml
  3. main_with_args.py: Them cac tham so can tinh chinh trong arg_parse
  4. supervisor.py: Sua config tham khao theo lstm/supervisor.py
    • Sua cac config
    • Tai ham train, return val_loss cuoi cung
  5. Chay command de run sweep
  6. Vao link de xem ket qua chay

Run code:

LSTM: Train: python main.py --model=lstm --input_len=48 --output_len=1 --train_ratio=1 --target_station=all

Encoder-Decoder Train: python main.py --model=encoder_decoder --input_len=48 --output_len=1 --train_ratio=1 --target_station=all

SAER: - ID: ja5tloix - Command: wandb agent aiotlab/Air-Quality-Prediction-Benchmark/ja5tloix - Link: https://wandb.ai/aiotlab/Air-Quality-Prediction-Benchmark/sweeps/ja5tloix

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 66.9%
  • Jupyter Notebook 27.6%
  • Shell 5.5%