Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make bitcast work for tensors of pointers #171

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions include/triton-shared/AnalysisStructured/PtrAnalysis.h
Original file line number Diff line number Diff line change
Expand Up @@ -242,6 +242,8 @@ class PtrAnalysis {
// PtrState for knownPtrs.
LogicalResult rewriteAddptrOp(triton::AddPtrOp op);

LogicalResult rewriteBitcastOp(triton::BitcastOp op);

LogicalResult rewriteMakeTensorPtrOp(triton::MakeTensorPtrOp op);

LogicalResult rewriteAdvanceOp(triton::AdvanceOp op);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ def TTS_MakeTensorPtrOp
: TTS_Op<"make_tptr", [AttrSizedOperandSegments, Pure]> {
let summary = "create a pointer that points to a tensor in memory";

// base: Base pointer used to contruct the tensor of pointers or pointer to tensor.
// base: Base pointer used to construct the tensor of pointers or pointer to tensor.
// sizes: Size of the data being loaded or stored.
// strides: The strides of the parent tensor, which means how much to increase the pointer
// by when moving by 1 element in a specific axis.
Expand Down Expand Up @@ -120,6 +120,19 @@ def TTS_MakeTensorPtrOp
//let hasCanonicalizer = 1;
}

def TTS_CastTensorPtrOp : TTS_Op<"cast_tptr", [SameOperandsAndResultShape,
Pure]> {
let summary = "Cast between types tensor pointers";

let arguments = (ins TT_PtrLike:$src);

let results = (outs TT_PtrLike:$result);

let assemblyFormat = "$src attr-dict `:` type($src) `->` type($result)";

// TODO: Add verifier
}

// SameVariadicResultSize
// AttrSizedResultSegments
def TTS_GetStructuredStateOp : TTS_Op<"get_structured_state", [AttrSizedResultSegments, Pure]> {
Expand Down
27 changes: 27 additions & 0 deletions lib/AnalysisStructured/PtrAnalysis.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -804,6 +804,26 @@ LogicalResult PtrAnalysis::rewriteAddptrOp(triton::AddPtrOp op) {
return success();
}

LogicalResult PtrAnalysis::rewriteBitcastOp(triton::BitcastOp op) {
Type resultType = op.getType();

if (auto resultTensorType = dyn_cast<RankedTensorType>(resultType)) {
Type elementType = resultTensorType.getElementType();
if (auto pointerType = dyn_cast<triton::PointerType>(elementType)) {
// arith::bitcast cannot handle pointers,
// we need to handle this clause separately
OpBuilder builder(op);
auto cast = builder.create<mlir::tts::CastTensorPtrOp>(op.getLoc(), resultType, ptrMap.lookupOrNull(op.getSrc()));
op->replaceAllUsesWith(cast);
op->erase();
ptrMap.map(cast.getResult(), cast.getResult());
return success();
}
}

return failure();
}

LogicalResult PtrAnalysis::rewriteMakeTensorPtrOp(triton::MakeTensorPtrOp op) {
OpBuilder builder(op);

Expand Down Expand Up @@ -1297,6 +1317,13 @@ LogicalResult PtrAnalysis::rewriteOp(Operation *rootOp, bool useUnsafeMask) {
}
return WalkResult::advance();
})
.Case<triton::BitcastOp>([&](auto addptr) {
if (rewriteBitcastOp(addptr).failed()) {
// failure means incompatible arguments
WalkResult::skip();
}
return WalkResult::advance();
})
.Case<triton::MakeTensorPtrOp>([&](auto maketptr) {
if (rewriteMakeTensorPtrOp(maketptr).failed()) {
maketptr->emitRemark(
Expand Down
23 changes: 22 additions & 1 deletion lib/Conversion/StructuredToMemref/StructuredToMemref.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -848,12 +848,33 @@ struct UnrealizedCastConverter
}
};

struct CastTensorPtrConverter
: public OpConversionPattern<tts::CastTensorPtrOp> {
using OpConversionPattern<tts::CastTensorPtrOp>::OpConversionPattern;
CastTensorPtrConverter(TypeConverter &typeConverter, MLIRContext *context)
: OpConversionPattern<tts::CastTensorPtrOp>(typeConverter, context) {}

LogicalResult
matchAndRewrite(tts::CastTensorPtrOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value src = op.getSrc();
auto srcType = cast<RankedTensorType>(src.getType());
auto dstType = cast<RankedTensorType>(op.getType());
auto pointerType = cast<triton::PointerType>(dstType.getElementType());
auto newType = MemRefType::get(srcType.getShape(), pointerType.getPointeeType());

auto unrealizedCast = rewriter.create<UnrealizedConversionCastOp>(op.getLoc(), newType, adaptor.getOperands());
rewriter.replaceOp(op, unrealizedCast);
return success();
}
};

} // namespace

void mlir::triton::populateStructuredToMemrefConversionPatterns(
RewritePatternSet &patterns, TypeConverter &typeConverter) {
patterns.add<UnrealizedCastConverter>(typeConverter, patterns.getContext());
patterns.add<MakeTensorPtrConverter, LoadConverter, StoreConverter,
ScalarLoadConverter, ScalarStoreConverter>(
ScalarLoadConverter, ScalarStoreConverter, CastTensorPtrConverter>(
patterns.getContext());
}
1 change: 0 additions & 1 deletion python/examples/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,6 @@ def device(request):
"test_tensor_atomic_rmw_block",
"test_nested_if_else_return",
"test_ptx_cast",
"test_compare_op",
"test_maxnreg",
"test_join",
"test_join_scalars",
Expand Down
44 changes: 44 additions & 0 deletions test/Conversion/TritonToStructured/cast_ptr.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
// RUN: triton-shared-opt --triton-to-structured %s | FileCheck %s

module {
tt.func public @kernel(%arg0: !tt.ptr<i1> {tt.divisibility = 16 : i32}, %arg1: !tt.ptr<i8> {tt.divisibility = 16 : i32}, %arg2: !tt.ptr<i32> {tt.divisibility = 16 : i32}) attributes {noinline = false} {
%0 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32>
%1 = tt.splat %arg1 : !tt.ptr<i8> -> tensor<128x!tt.ptr<i8>>
%2 = tt.addptr %1, %0 : tensor<128x!tt.ptr<i8>>, tensor<128xi32>
%3 = tt.load %2 : tensor<128x!tt.ptr<i8>>
%4 = tt.splat %arg2 : !tt.ptr<i32> -> tensor<128x!tt.ptr<i32>>
%5 = tt.addptr %4, %0 : tensor<128x!tt.ptr<i32>>, tensor<128xi32>
%6 = tt.load %5 : tensor<128x!tt.ptr<i32>>
%7 = arith.extsi %3 : tensor<128xi8> to tensor<128xi32>
%8 = arith.cmpi eq, %7, %6 : tensor<128xi32>
%9 = tt.splat %arg0 : !tt.ptr<i1> -> tensor<128x!tt.ptr<i1>>
%10 = tt.addptr %9, %0 : tensor<128x!tt.ptr<i1>>, tensor<128xi32>
%11 = tt.bitcast %10 : tensor<128x!tt.ptr<i1>> -> tensor<128x!tt.ptr<i8>>
%12 = arith.extui %8 : tensor<128xi1> to tensor<128xi8>
tt.store %11, %12 : tensor<128x!tt.ptr<i8>>
tt.return
}
}

// CHECK: module {
// CHECK: tt.func public @kernel(%arg0: !tt.ptr<i1> {tt.divisibility = 16 : i32}, %arg1: !tt.ptr<i8> {tt.divisibility = 16 : i32}, %arg2: !tt.ptr<i32> {tt.divisibility = 16 : i32}) attributes {noinline = false} {
// CHECK: [[VAR_0:%.+]] = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32>
// CHECK: [[VAR_1:%.+]] = tt.splat %arg1 : !tt.ptr<i8> -> tensor<128x!tt.ptr<i8>>
// CHECK: [[VAR_2:%.+]] = tts.make_tptr %arg1 to sizes: [128], strides: [1], offsets: [0], shape: [0], order: [] : <i8> to tensor<128x!tt.ptr<i8>>
// CHECK: [[VAR_3:%.+]] = tt.addptr [[VAR_1]], [[VAR_0]] : tensor<128x!tt.ptr<i8>>, tensor<128xi32>
// CHECK: [[VAR_4:%.+]] = "tts.load"([[VAR_2]]) <{operandSegmentSizes = array<i32: 1, 0, 0>, static_mask_dims = array<i64>}> : (tensor<128x!tt.ptr<i8>>) -> tensor<128xi8>
// CHECK: [[VAR_5:%.+]] = tt.splat %arg2 : !tt.ptr<i32> -> tensor<128x!tt.ptr<i32>>
// CHECK: [[VAR_6:%.+]] = tts.make_tptr %arg2 to sizes: [128], strides: [1], offsets: [0], shape: [0], order: [] : <i32> to tensor<128x!tt.ptr<i32>>
// CHECK: [[VAR_7:%.+]] = tt.addptr [[VAR_5]], [[VAR_0]] : tensor<128x!tt.ptr<i32>>, tensor<128xi32>
// CHECK: [[VAR_8:%.+]] = "tts.load"([[VAR_6]]) <{operandSegmentSizes = array<i32: 1, 0, 0>, static_mask_dims = array<i64>}> : (tensor<128x!tt.ptr<i32>>) -> tensor<128xi32>
// CHECK: [[VAR_9:%.+]] = arith.extsi [[VAR_4]] : tensor<128xi8> to tensor<128xi32>
// CHECK: [[VAR_10:%.+]] = arith.cmpi eq, [[VAR_9]], [[VAR_8]] : tensor<128xi32>
// CHECK: [[VAR_11:%.+]] = tt.splat %arg0 : !tt.ptr<i1> -> tensor<128x!tt.ptr<i1>>
// CHECK: [[VAR_12:%.+]] = tts.make_tptr %arg0 to sizes: [128], strides: [1], offsets: [0], shape: [0], order: [] : <i1> to tensor<128x!tt.ptr<i1>>
// CHECK: [[VAR_13:%.+]] = tt.addptr [[VAR_11]], [[VAR_0]] : tensor<128x!tt.ptr<i1>>, tensor<128xi32>
// CHECK: [[VAR_14:%.+]] = tts.cast_tptr [[VAR_12]] : tensor<128x!tt.ptr<i1>> -> tensor<128x!tt.ptr<i8>>
// CHECK: [[VAR_15:%.+]] = arith.extui [[VAR_10]] : tensor<128xi1> to tensor<128xi8>
// CHECK: "tts.store"([[VAR_14]], [[VAR_15]]) <{static_mask_dims = array<i64>}> : (tensor<128x!tt.ptr<i8>>, tensor<128xi8>) -> ()
// CHECK: tt.return
// CHECK: }
// CHECK: }