Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow packing matmul dims equal to block size #961

Merged
merged 2 commits into from
Sep 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion lib/TPP/Transforms/ToBlockLayoutAndBack.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -515,7 +515,8 @@ struct PackMatmul : public tpp::impl::PackMatmulBase<PackMatmul> {
size_t posK = 2 + inc;
if (!linalgx::utils::validateFullTilesOnDims(
cast<TilingInterface>(linalgOp.getOperation()),
{tileOnI, tileOnJ, tileOnK}, {posI, posJ, posK})) {
{tileOnI, tileOnJ, tileOnK}, {posI, posJ, posK},
/*minTileFactor=*/1)) {
return std::nullopt;
}

Expand Down
8 changes: 2 additions & 6 deletions test/Passes/DefaultPipeline/default-tpp-passes.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -219,16 +219,12 @@ func.func @softmax(%arg0: tensor<2x2x2x2xf32>, %arg1: tensor<2x2x2x2xf32>) -> te
// CHECK-LABEL: batch_matmul_rewrite
func.func @batch_matmul_rewrite(%arg0: tensor<512x32x64xf32>, %arg1: tensor<512x64x32xf32>) -> tensor<512x32x32xf32> {
%0 = tensor.empty() : tensor<512x32x32xf32>
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : i64
// CHECK-DAG: %[[C32:.+]] = arith.constant 32 : i64
// CHECK-DAG: %[[C64:.+]] = arith.constant 64 : i64
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : i64
// CHECK-DAG: %[[C0_i:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[C1_i:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[C512_i:.+]] = arith.constant 512 : index
// CHECK: %{{.+}} = call @xsmm_gemm_dispatch(%[[C1]], %[[C32]], %[[C32]], %[[C64]], %[[C64]], %[[C32]], %[[C32]], %[[C0]])
// CHECK: %{{.+}} = call @xsmm_brgemm_dispatch
rengolin marked this conversation as resolved.
Show resolved Hide resolved
// CHECK: scf.parallel{{.*}}(%[[C0_i]]) to (%[[C512_i]]) step (%[[C1_i]])
// CHECK: xsmm_gemm_invoke
// CHECK: xsmm_brgemm_invoke
%1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<512x32x64xf32>, tensor<512x64x32xf32>)
outs(%0 : tensor<512x32x32xf32>) -> tensor<512x32x32xf32>
return %1 : tensor<512x32x32xf32>
Expand Down
30 changes: 30 additions & 0 deletions test/Passes/pass-matmul-blocking.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,36 @@ func.func @block_linalg_matmul(

// -----

func.func @block_dims_equal_to_factors(
%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<32x32xf32>)
-> tensor<32x32xf32> {
%0 = linalg.matmul ins(%arg0, %arg1: tensor<32x32xf32>, tensor<32x32xf32>)
outs(%arg2: tensor<32x32xf32>)
-> tensor<32x32xf32>
return %0 : tensor<32x32xf32>
}

// CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d3, d5)>
// CHECK-DAG: #[[MAP4:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d2, d5, d4)>
// CHECK-DAG: #[[MAP5:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d3, d4)>

// CHECK-LABEL: func @block_dims_equal_to_factors(
// CHECK-SAME: %[[ARG0:[0-9a-z]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG1:[0-9a-z]+]]: tensor<32x32xf32>
// CHECK-SAME: %[[ARG2:[0-9a-z]+]]: tensor<32x32xf32>) -> tensor<32x32xf32> {
// CHECK: %[[BUF0:.+]] = tensor.empty() : tensor<1x1x32x32xf32>
// CHECK: %[[PACK0:.+]] = tensor.pack %[[ARG0]] outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [32, 32] into %[[BUF0]] : tensor<32x32xf32> -> tensor<1x1x32x32xf32>
// CHECK: %[[BUF1:.*]] = tensor.empty() : tensor<1x1x32x32xf32>
// CHECK: %[[PACK1:.+]] = tensor.pack %[[ARG1]] outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 32] into %[[BUF1]] : tensor<32x32xf32> -> tensor<1x1x32x32xf32>
// CHECK: %[[BUF2:.+]] = tensor.empty() : tensor<1x1x32x32xf32>
// CHECK: %[[PACK2:.+]] = tensor.pack %[[ARG2]] inner_dims_pos = [0, 1] inner_tiles = [32, 32] into %[[BUF2]] : tensor<32x32xf32> -> tensor<1x1x32x32xf32>
// CHECK: %[[VAL:.+]] = linalg.generic {indexing_maps = [#[[MAP3]], #[[MAP4]], #[[MAP5]]], iterator_types = ["parallel", "parallel", "reduction", "parallel", "parallel", "reduction"]} ins(%[[PACK0]], %[[PACK1]] : tensor<1x1x32x32xf32>, tensor<1x1x32x32xf32>) outs(%[[PACK2]] : tensor<1x1x32x32xf32>)
rengolin marked this conversation as resolved.
Show resolved Hide resolved
// CHECK: %[[OUT:.+]] = tensor.unpack %[[VAL]] inner_dims_pos = [0, 1] inner_tiles = [32, 32] into %[[ARG2]] : tensor<1x1x32x32xf32> -> tensor<32x32xf32>
// CHECK: return %[[OUT]] : tensor<32x32xf32>
// CHECK: }

// -----

// We don't expect to block as the blocking factor do not create full tiles.
func.func @block_linalg_matmul(
%arg0: tensor<5x6xf32>, %arg1: tensor<6x5xf32>, %arg2: tensor<5x5xf32>)
Expand Down