Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/plot state #157

Merged
merged 8 commits into from
Dec 14, 2023
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,14 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

## [Unreleased]

### Added

- Added `plot.state` function in pylace to render PCC states

### Fixed

- Fixed issue that would cause random row order when indexing pylace Engines by a single (column) index, e.g., engine['column'] would return the columns in a different order every time the engine was loaded

## [python-0.5.0] - 2023-11-20

### Added
Expand Down
304 changes: 303 additions & 1 deletion pylace/lace/plot.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
"""Plottling utilities."""
"""Plotting utilities"""

from typing import Dict, Optional, Union

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.express as px
Expand Down Expand Up @@ -209,6 +210,307 @@ def prediction_uncertainty(
return fig


def _get_xs(engine, cat_rows, view_cols, compute_ps=False):
xs = engine[cat_rows, view_cols]

if xs is None:
if compute_ps:
return np.array([None]), [0.0]
else:
return np.array([None])

if isinstance(xs, (int, float)):
xs = np.array(xs)
if compute_ps:
ps = [0.0]
else:
xs = xs[:, 1:]

if compute_ps:
n_rows, n_cols = xs.shape
ps = []
for row_ix in range(n_rows):
row = xs[row_ix, :]
null_count = row.null_count()
to_drop = [c for c in row.columns if null_count[0, c] > 0]
k = n_cols - len(to_drop)
if k == 0:
ps.append(float("-inf"))
continue

row = row.drop(to_drop)
p = engine.logp(row) / k
ps.append(p)

xs = xs.to_numpy()

if compute_ps:
return xs, ps
else:
return xs


def _makenorm(cmap, missing_color, *, mapper=None, xlim=None):
if mapper is not None:

def _fn(val):
k = len(mapper) - 1
return mapper[val] / k

else:
xmin, xmax = xlim

def _fn(val):
return (val - xmin) / (xmax - xmin)

def _norm(val):
colormap = plt.cm._colormaps[cmap]
if pd.isnull(val):
return missing_color
else:
return np.array(colormap(_fn(val)))

return _norm


def _get_colors(engine: Engine, *, cmap: str = "gray_r", missing_color=None):
codebook = engine.codebook

if missing_color is None:
missing_color = np.array([1.0, 0.0, 0.2, 1.0])

n_rows, n_cols = engine.shape
colors = np.zeros((n_rows, n_cols, 4))

for i, col in enumerate(engine.columns):
ftype = engine.ftype(col)
xs = engine[col][col]
if ftype == "Categorical":
valmap = codebook.value_map(col)
mapper = {v: k for k, v in enumerate(valmap.values())}

_norm = _makenorm(cmap, missing_color, mapper=mapper)
else:
_norm = _makenorm(cmap, missing_color, xlim=(xs.min(), xs.max()))

colors[:, i] = np.array([_norm(x) for x in xs])

return colors


def state(
engine: Engine,
state_ix: int,
*,
cmap: Optional[str] = None,
missing_color=None,
cat_gap: int = 1,
view_gap: int = 1,
show_index: bool = True,
show_columns: bool = True,
min_height: int = 0,
min_width: int = 0,
aspect=None,
ax=None,
):
"""
Plot a Lace state.

View are sorted from largest (most columns) to smallest. Within views,
columns are sorted from highest (left) to lowest total likelihood.
Categories are sorted from largest (most rows) to smallest. Within
categories, rows are sorted from highest (top) to lowest log likelihood.

Parameters
----------
engine: Engine
The engine containing the states to plot
state_ix: int
The index of the state to plot
cmap: str, optional, default: gray_r
The color map to use for present data
missing_color: optional, default: red
The RGBA array representation ([float, float, float, float]) of the
color to use to represent missing data
cat_gap: int, optional, default: 1
The vertical spacing (in cells) between categories
view_gap: int, optional, default: 1
The horizontal spacing (in cell) between views
show_index: bool, default: True
If True (default), will show row names next to rows in each view
show_columns: bool, default: True
If True (default), will show columns names above each column
min_height: int, default: 0
The minimum height in cells of the state render. Padding will be added
to the lower part of the image.
min_width: int (default: 0)
The minimum width in cells of the state render. Padding will be added
to the right of the image.
aspect: {'equal', 'auto'} or float or None, default: None
matplotlib imshow aspect
ax: matplotlib.Axis, optional
The axis on which to plot

Examples
--------

Render an animals state

>>> import matplotlib.pyplot as plt
>>> from lace.examples import Animals
>>> from lace import plot
>>> engine = Animals()
>>> fig = plt.figure(tight_layout=True, facecolor="#00000000")
>>> ax = plt.gca()
>>> plot.state(
... engine,
... 7,
... view_gap=13,
... cat_gap=3,
... ax=ax,
... )
>>> _ = plt.axis("off")
>>> plt.show()


Render a satellites State, which has continuous, categorial and
missing data

>>> from lace.examples import Satellites
>>> engine = Satellites()
>>> fig = plt.figure(tight_layout=True, facecolor="#00000000")
>>> ax = plt.gca()
>>> plot.state(
... engine,
... 1,
... view_gap=2,
... cat_gap=100,
... show_index=False,
... show_columns=False,
... ax=ax,
... cmap="YlGnBu",
... aspect="auto"
... )
>>> _ = plt.axis("off")
>>> plt.show()
"""
if ax is None:
ax = plt.gca()

schmidmt marked this conversation as resolved.
Show resolved Hide resolved
if cmap is None:
cmap = "gray_r"

n_rows, n_cols = engine.shape
col_asgn = engine.column_assignment(state_ix)
row_asgns = engine.row_assignments(state_ix)

n_views = len(row_asgns)
max_cats = max(max(asgn) + 1 for asgn in row_asgns)

dim_col = n_cols + (n_views - 1) * view_gap
dim_row = n_rows + (max_cats - 1) * cat_gap

zs = np.zeros((dim_row, dim_col, 4))

row_names = engine.index
col_names = engine.columns

view_counts = np.bincount(col_asgn)
view_ixs = np.argsort(view_counts)[::-1]

colors = _get_colors(engine, cmap=cmap, missing_color=missing_color)

col_start = 0
for view_ix in view_ixs:
row_asgn = row_asgns[view_ix]
row_start = 0
view_cols = [i for i, z in enumerate(col_asgn) if z == view_ix]
view_len = len(view_cols)

# sort columns within each view
ps = []
for col in view_cols:
xs = engine[col][:, 1:].drop_nulls()
if xs.shape[0] == 0:
ps.append(float("-inf"))
ps.append(engine.logp(xs).sum() / xs.shape[0])
ixs = np.argsort(ps)[::-1]
view_cols = [view_cols[ix] for ix in ixs]

if show_columns:
for i, col in enumerate(view_cols):
ax.text(
col_start + i,
-1,
col_names[col],
ha="center",
va="bottom",
rotation=90,
)

max(row_asgn) + 1
cat_counts = np.bincount(row_asgn)
cat_ixs = np.argsort(cat_counts)[::-1]

for cat_ix in cat_ixs:
cat_rows = [i for i, z in enumerate(row_asgn) if z == cat_ix]
cat_len = len(cat_rows)

xs, ps = _get_xs(engine, cat_rows, view_cols, compute_ps=True)
ixs = np.argsort(ps)[::-1]
cat_rows = [cat_rows[ix] for ix in ixs]

cs = np.zeros((len(cat_rows), len(view_cols), 4))
for iix, i in enumerate(cat_rows):
for jix, j in enumerate(view_cols):
cs[iix, jix] = colors[i, j]
# cs = colors[cat_rows, view_cols, :]
zs[
row_start : row_start + cat_len,
col_start : col_start + view_len,
] = cs

# label rows
if show_index:
for i, row in enumerate(cat_rows):
ax.text(
col_start - 1,
i + row_start,
row_names[row],
ha="right",
va="center",
)

ax.text(
col_start + view_counts[view_ix] / 2.0 - 0.5,
row_start + cat_counts[cat_ix] + cat_gap * 0.15,
f"$C_{{{cat_ix}}}$",
ha="center",
va="center",
)

row_start += cat_len + cat_gap

ax.text(
col_start + view_counts[view_ix] / 2.0 - 0.5,
dim_row + cat_gap,
f"$V_{{{view_ix}}}$",
ha="left",
va="top",
)
col_start += view_len + view_gap

if min_height > zs.shape[0]:
margin = min_height - zs.shape[0]
zs = np.vstack((zs, np.zeros((margin, zs.shape[1], 4))))

if min_width > zs.shape[1]:
margin = min_width - zs.shape[1]
zs = np.hstack((zs, np.zeros((zs.shape[0], margin, 4))))

ax.matshow(zs, aspect=aspect)


if __name__ == "__main__":
import doctest

Expand Down
15 changes: 10 additions & 5 deletions pylace/src/utils.rs
Original file line number Diff line number Diff line change
Expand Up @@ -152,14 +152,19 @@ impl<'s> TableIndex<'s> {
) -> PyResult<(Vec<(usize, String)>, Vec<(usize, String)>)> {
match self {
Self::Single(ixs) => {
let row_ixs = codebook
.row_names
.iter()
.map(|(a, &b)| (b, a.clone()))
// let row_ixs = codebook
schmidmt marked this conversation as resolved.
Show resolved Hide resolved
// .row_names
// .iter()
// .map(|(a, &b)| (b, a.clone()))
// .collect();
let row_ixs: PyResult<Vec<(usize, String)>> = (0..codebook
.n_rows())
.map(|ix| IntOrString::Int(ix as isize))
.map(|ix| ix.row_ix(codebook))
.collect();

let col_ixs = ixs.col_ixs(codebook)?;
Ok((row_ixs, col_ixs))
Ok((row_ixs?, col_ixs))
}
Self::Tuple(row_ixs, col_ixs) => {
col_ixs.col_ixs(codebook).and_then(|cixs| {
Expand Down
13 changes: 13 additions & 0 deletions pylace/tests/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,19 @@ def _random_index(n, strs):
return random.choice(strs)


@pytest.mark.parametrize("target", ["black", "swims", 12, 45])
def test_single_index_consistency(target):
# for some reason, the order of the row indeices iterator was different
# each time we read in the metadata -- probably because of some random
# state initialization in a hashmap. Not sure why that would happen, but
# we fixed that particular issue.
a1 = Animals()
a2 = Animals()
xs = a1[target][:, 1]
ys = a2[target][:, 1]
assert all(x == y for x, y in zip(xs, ys))


def tests_index_positive_int_tuple(animals):
assert animals[0, 0] == 0
assert animals[2, 3] == 0
Expand Down
Loading