-
-
Notifications
You must be signed in to change notification settings - Fork 229
Covariance
Chris Fonnesbeck edited this page Apr 12, 2016
·
1 revision
from pymc.gp import *
from pymc.gp.cov_funs import matern
from numpy import *
C = Covariance(eval_fun = matern.euclidean, diff_degree = 1.4, amp = .4, scale = 1.)
# C = Covariance(eval_fun = matern.euclidean, diff_degree = 1.4, amp = .4, scale = 1., rank_limit=100)
# C = FullRankCovariance(eval_fun = matern.euclidean, diff_degree = 1.4, amp = .4, scale = 1.)
# C = NearlyFullRankCovariance(eval_fun = matern.euclidean, diff_degree = 1.4, amp = .4, scale = 1.)
#### - Plot - ####
if __name__ == '__main__':
from pylab import *
x=arange(-1.,1.,.01)
clf()
# Plot the covariance function
subplot(1,2,1)
contourf(x,x,C(x,x).view(ndarray),origin='lower',extent=(-1.,1.,-1.,1.),cmap=cm.bone)
xlabel('x')
ylabel('y')
title('C(x,y)')
axis('tight')
colorbar()
# Plot a slice of the covariance function
subplot(1,2,2)
plot(x,C(x,0).view(ndarray).ravel(),'k-')
xlabel('x')
ylabel('C(x,0)')
title('A slice of C')
# show()