Skip to content
Chris Fonnesbeck edited this page Apr 12, 2016 · 1 revision
import pymc as pm
import numpy as np


class TruncatedMetropolis(pm.Metropolis):
    def __init__(self, stochastic, low_bound, up_bound, *args, **kwargs):
        self.low_bound = low_bound
        self.up_bound = up_bound
        pm.Metropolis.__init__(self, stochastic, *args, **kwargs)

    # Propose method written by hacking Metropolis.propose()
    def propose(self):
        tau = 1./(self.adaptive_scale_factor * self.proposal_sd)**2
        self.stochastic.value = pm.rtruncnorm(self.stochastic.value, tau, self.low_bound, self.up_bound)

    # Hastings factor method accounts for asymmetric proposal distribution
    def hastings_factor(self):
        tau = 1./(self.adaptive_scale_factor * self.proposal_sd)**2
        cur_val = self.stochastic.value
        last_val = self.stochastic.last_value

        lp_for = pm.truncnorm_like(cur_val, last_val, tau, self.low_bound, self.up_bound)
        lp_bak = pm.truncnorm_like(last_val, cur_val, tau, self.low_bound, self.up_bound)

        if self.verbose > 1:
            print self._id + ': Hastings factor %f'%(lp_bak - lp_for)
        return lp_bak - lp_for


# Maximum data value is around 1 (plot the histogram).
data = np.array([-1.6464815 , -0.86463278,  0.80656378,  0.67664181, -0.34312965,
       -0.29654303,  0.76170081,  0.30418603, -0.45473639, -0.24894277,
       -0.07173209, -1.64602289,  0.0804062 , -0.82159472,  0.98224623,
       -1.92538425, -1.95388748, -0.41145515,  0.23972844, -0.78645389,
       -0.21687104, -0.2939634 ,  0.51229013,  0.04626286,  0.18329919,
       -1.12775839, -1.64187249,  0.33440094, -0.95224695,  0.15650266,
       -0.54056102,  0.12240128, -0.95397459,  0.44806432, -1.02955556,
        0.31740861, -0.8762523 ,  0.47377688,  0.76516415,  0.27890419,
       -0.07819642, -0.13399348,  0.82877293,  0.22308624,  0.7485783 ,
       -0.14700254, -1.03145657,  0.85641097,  0.43396285,  0.47901653,
        0.80137086,  0.33566812,  0.71443253, -1.57590815, -0.24090179,
       -2.0128344 ,  0.34503324,  0.12944091, -1.5327008 ,  0.06363034,
        0.21042021, -0.81425636,  0.20209279, -1.48130423, -1.04983523,
        0.16001774, -0.75239072,  0.33427956, -0.10224921,  0.26463561,
       -1.09374674, -0.72749811, -0.54892116, -1.89631844, -0.94393545,
       -0.2521341 ,  0.26840341,  0.23563219,  0.35333094])

# Model: the data are truncated-normally distributed with unknown upper bound.
mu = pm.Normal('mu',0,.01, value=0)
tau = pm.Exponential('tau',.01, value=1)
cutoff = pm.Exponential('cutoff',1, value=1.3)
D = pm.TruncatedNormal('D',mu,tau,-np.inf,cutoff,value=data,observed=True)

M = pm.MCMC([mu,tau,cutoff,D])

# Use a TruncatedMetropolis step method that will never propose jumps below D's maximum value.
M.use_step_method(TruncatedMetropolis, cutoff, D.value.max(), np.inf)
# Get a handle to the step method handling cutoff to investigate its behavior.
S = M.step_method_dict[cutoff][0]

M.isample(10000,0,10)
Clone this wiki locally