-
-
Notifications
You must be signed in to change notification settings - Fork 229
Home
To learn more about PyMC, please refer to the online user's guide.
PyMC is used for Bayesian modeling in a variety of fields. Here is a partial list of publications that cite PyMC in their work.
-
DisasterModel: A changepoint example, with several variations.
-
StraightLineFit: A two-parameter linear regression.
-
WeibullFit: Fitting the parameters of a Weibull distribution.
-
NormalFit: Fitting the parameters of a normal distribution.
-
VonMisesFit: Fitting the parameters of a Von Mises distribution.
-
GelmanBioassay: From section 3.7 of Bayesian Data Analysis by Gelman et al., 2nd ed.
-
CustomStep: An example of a custom step method.
-
Manatee iPython Notebook demonstrating how to estimate the proportional causes of mortality for manatees.
-
LatentOccupancy Simple occupancy model using latent states
-
Recovery Waterfowl band recovery model
-
Price Simple pricing model
-
Pump Hierarchical Poisson failure rates
-
Surplus Fisheries surplus production model
-
Salamanders Salamander occupancy estimation model
-
Probit Simple probit regression model
-
ExponentialSurvival Exponential model for melanoma survival data
-
Sir Hierarchical disease dynamics model (from Zipkin et al. 2010)
-
Zero-inflated poisson model Zero-inflated Poisson example using simulated data.
For users familiar with BUGS, here are a few examples that are translated directly from BUGS models; the original code is included in each file as a docstring:
-
Koala Koala sighting model (from Link & Barker 2009)
-
Mt Conditional multinomial mark-recapture model (from Link & Barker 2009)
-
Mt2 Unconditional multinomial mark-recapture model (apparently not possible in BUGS)
-
BayesFactor Simple example of Bayes factor calculation
-
Mean: Creates a mean function.
-
Covariance: Creates a covariance function.
-
Realizations: Draws several realizations.
-
Observations: Observes a mean and covariance, then draws several realizations.
-
BasisCov: Creates a covariance from a basis with normally-distributed coefficients.
-
GPMCMC: Creates a PyMC model containing a Gaussian process, and fits it with MCMC.
-
Non-parametric regression: iPython Notebook of NP regression using GP
-
Examples of use of John Salvatier's
multichain_mcmc
package: https://github.com/jsalvatier/multichain_mcmc/tree/master/multichain_mcmc/examples -
Examples for John's
gradient_samplers
package: https://github.com/jsalvatier/gradient_samplers/tree/master/gradient_samplers/examples -
Abraham Flaxman's blog contains numerous PyMC examples, both for standard statistics and unusual applications, with code snippets: http://healthyalgorithms.wordpress.com/tag/pymc/
-
Whit Armstrong's comparison of PyMC with other packages for Gelman et al.'s radon dataset: https://github.com/armstrtw/pymc_radon
-
Estimation of Bayes Factors using PyMC: http://stronginference.com/weblog/2010/12/16/estimating-bayes-factors-using-pymc.html
- http://groups.google.com/group/pymc/browse_thread/thread/9dd4620a4a496c8a
- http://groups.google.com/group/pymc/browse_thread/thread/7c2f42d223be9efa
- http://groups.google.com/group/pymc/browse_thread/thread/0af5f316a6f3ad25
- http://groups.google.com/group/pymc/browse_thread/thread/7a7eae82b64ea041
- http://groups.google.com/group/pymc/browse_thread/thread/538f933f3c08809e
- http://groups.google.com/group/pymc/browse_thread/thread/17c5262b4618c7b5
- http://groups.google.com/group/pymc/browse_thread/thread/d754ba79f95b9f78
- http://groups.google.com/group/pymc/browse_thread/thread/e2b9c5369569d417
- http://groups.google.com/group/pymc/browse_thread/thread/844a1c2de52d72c2
- http://groups.google.com/group/pymc/browse_thread/thread/afe91c4d9440d6da
- http://groups.google.com/group/pymc/browse_thread/thread/a311facec455ef99
- http://groups.google.com/group/pymc/browse_thread/thread/3ed5f11b93dc8ddb
- http://groups.google.com/group/pymc/browse_thread/thread/cc36569d9d002843
- http://groups.google.com/group/pymc/browse_thread/thread/e84b6cd07b94b3ef
- http://groups.google.com/group/pymc/browse_thread/thread/0ba6ca01dbb82a46
- http://groups.google.com/group/pymc/browse_thread/thread/2047306d8ea31715
- http://groups.google.com/group/pymc/browse_thread/thread/81aa849deae8a1b8
- http://groups.google.com/group/pymc/browse_thread/thread/c97ca688bda4ad1b
- http://groups.google.com/group/pymc/browse_thread/thread/1e9e582113cd6b4b
- http://groups.google.com/group/pymc/browse_thread/thread/53918b41f8eb4744
- http://groups.google.com/group/pymc/browse_thread/thread/4eb664a913ad9011
- http://groups.google.com/group/pymc/browse_thread/thread/c23045038a32fb12
- http://groups.google.com/group/pymc/browse_thread/thread/4cd684bb4f11ea01
- http://groups.google.com/group/pymc/browse_thread/thread/02f1ff5e29343627
- http://groups.google.com/group/pymc/browse_thread/thread/e49455c860add294
- http://groups.google.com/group/pymc/browse_thread/thread/c6ce37a80edf7f85
- http://groups.google.com/group/pymc/browse_thread/thread/87a7d33086f6b4c0
- http://groups.google.com/group/pymc/browse_thread/thread/9c1f54daa966c148
- http://groups.google.com/group/pymc/browse_thread/thread/f988ce1685951393
- http://groups.google.com/group/pymc/browse_thread/thread/41b64c126b62080c
- http://groups.google.com/group/pymc/browse_thread/thread/fef4582f1ff73077
- http://groups.google.com/group/pymc/browse_thread/thread/ec828c63f09a08ae
- http://groups.google.com/group/pymc/browse_thread/thread/423c06187a482b64
- http://groups.google.com/group/pymc/browse_thread/thread/a6092613089e0e70
- http://groups.google.com/group/pymc/browse_thread/thread/0001396a059ac969