Skip to content

Commit

Permalink
Tests now handle nested batches. FillScaleTriL uses .diagonal_scatter…
Browse files Browse the repository at this point in the history
… instead of .copy_
  • Loading branch information
LuisA92 committed Apr 27, 2024
1 parent 4979d9e commit 73417a8
Show file tree
Hide file tree
Showing 2 changed files with 67 additions and 43 deletions.
72 changes: 40 additions & 32 deletions src/rs_distributions/transforms/fill_scale_tril.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,15 +5,15 @@


class FillScaleTriL(Transform):
def __init__(self, diag_transform=None, diag_shift=1e-05):
def __init__(self, diag_transform=None, diag_shift=1e-06):
"""
Converts a tensor into a lower triangular matrix with positive diagonal entries.
Args:
diag_transform: transformation used on diagonal to ensure positive values.
Default is SoftplusTransform
diag_shift (float): small offset to avoid diagonals very close to zero.
Default offset is 1e-05
Default offset is 1e-06
"""
super().__init__()
Expand All @@ -22,9 +22,17 @@ def __init__(self, diag_transform=None, diag_shift=1e-05):
)
self.diag_shift = diag_shift

domain = constraints.real_vector
codomain = constraints.lower_cholesky
bijective = True
@property
def domain(self):
return constraints.real_vector

@property
def codomain(self):
return constraints.lower_cholesky

@property
def bijective(self):
return True

def _call(self, x):
"""
Expand All @@ -36,12 +44,14 @@ def _call(self, x):
torch.Tensor: Transformed lower triangular matrix
"""
x = vec_to_tril_matrix(x)
diagonal_elements = x.diagonal(dim1=-2, dim2=-1)
transformed_diagonal = self.diag_transform(diagonal_elements)
diagonal = x.diagonal(dim1=-2, dim2=-1)
if self.diag_shift is not None:
transformed_diagonal += self.diag_shift
x.diagonal(dim1=-2, dim2=-1).copy_(transformed_diagonal)
return x
result = x.diagonal_scatter(
self.diag_transform(diagonal + self.diag_shift), dim1=-2, dim2=-1
)
else:
result = x.diagonal_scatter(self.diag_transform(diagonal), dim1=-2, dim2=-1)
return result

def _inverse(self, y):
"""
Expand All @@ -54,31 +64,29 @@ def _inverse(self, y):
torch.Tensor: Inversely transformed vector
"""
diagonal_elements = y.diagonal(dim1=-2, dim2=-1)
diagonal = y.diagonal(dim1=-2, dim2=-1)
if self.diag_shift is not None:
transformed_diagonal = self.diag_transform.inv(
diagonal_elements - self.diag_shift
result = y.diagonal_scatter(
self.diag_transform.inv(diagonal - self.diag_shift), dim1=-2, dim2=-1
)
else:
transformed_diagonal = self.diag_transform.inv(diagonal_elements)
y.diagonal(dim1=-2, dim2=-1).copy_(transformed_diagonal)
return tril_matrix_to_vec(y)
result = y.diagonal_scatter(
self.diag_transform.inv(diagonal), dim1=-2, dim2=-1
)
return tril_matrix_to_vec(result)

def log_abs_det_jacobian(self, x, y):
"""
Computes the log absolute determinant of the Jacobian matrix for the transformation.
Assumes that Softplus is used on the diagonal.
The derivative of the softplus function is the sigmoid function.
Args:
x (torch.Tensor): Input vector before transformation
y (torch.Tensor): Output lower triangular matrix from _call
Returns:
torch.Tensor: Log absolute determinant of the Jacobian matrix
"""
diag_elements = y.diagonal(dim1=-2, dim2=-1)
derivatives = torch.sigmoid(diag_elements)
log_det_jacobian = torch.log(derivatives).sum()
L = vec_to_tril_matrix(x)
diag = L.diagonal(dim1=-2, dim2=-1)
diag.requires_grad_(True)
if self.diag_shift is not None:
transformed_diag = self.diag_transform(diag + self.diag_shift)
else:
transformed_diag = self.diag_transform(diag)
derivatives = torch.autograd.grad(
outputs=transformed_diag,
inputs=diag,
grad_outputs=torch.ones_like(transformed_diag),
)[0]
log_det_jacobian = torch.log(torch.abs(derivatives)).sum()
return log_det_jacobian
38 changes: 27 additions & 11 deletions tests/transforms/fill_scale_tril.py
Original file line number Diff line number Diff line change
@@ -1,27 +1,43 @@
import pytest
from rs_distributions.transforms.fill_scale_tril import FillScaleTriL
import torch
from torch.distributions.utils import vec_to_tril_matrix, tril_matrix_to_vec
from torch.distributions.constraints import lower_cholesky
from torch.distributions.transforms import (
ComposeTransform,
ExpTransform,
SoftplusTransform,
)


@pytest.mark.parametrize("input_shape", [(6,), (10,)])
def test_forward_transform(input_shape):
@pytest.mark.parametrize("batch_shape, d", [((2, 3), 6), ((1, 4, 5), 10)])
def test_forward_transform(batch_shape, d):
transform = FillScaleTriL()
input_shape = batch_shape + (d,)
input_vector = torch.randn(input_shape)
transformed_vector = transform._call(input_vector)

assert isinstance(transformed_vector, torch.Tensor)
assert transformed_vector.shape == (
(-1 + torch.sqrt(torch.tensor(1 + input_shape[0] * 8))) / 2,
(-1 + torch.sqrt(torch.tensor(1 + input_shape[0] * 8))) / 2,
)
assert lower_cholesky.check(transformed_vector)
n = int((-1 + torch.sqrt(torch.tensor(1 + 8 * d))) / 2)
expected_output_shape = batch_shape + (n, n)
cholesky_constraint_check = lower_cholesky.check(transformed_vector)

assert isinstance(transformed_vector, torch.Tensor), "Output is not a torch.Tensor"
assert (
transformed_vector.shape == expected_output_shape
), f"Expected shape {expected_output_shape}, got {transformed_vector.shape}"
assert cholesky_constraint_check.all()

@pytest.mark.parametrize("input_vector", [torch.randn(3), torch.randn(6)])
def test_forward_equals_inverse(input_vector):

@pytest.mark.parametrize("batch_shape, d", [((2, 3), 6), ((1, 4, 5), 10)])
def test_forward_equals_inverse(batch_shape, d):
transform = FillScaleTriL()
input_shape = batch_shape + (d,)
input_vector = torch.randn(input_shape)
L = transform._call(input_vector)
invL = transform._inverse(L)

assert torch.allclose(input_vector, invL, atol=1e-6)
n = int((-1 + torch.sqrt(torch.tensor(1 + 8 * d))) / 2)

assert torch.allclose(
input_vector, invL, atol=1e-4
), "Original input and the result of applying inverse transformation are not close enough"

0 comments on commit 73417a8

Please sign in to comment.