Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RS17, Proposition 9.10. #149

Merged
merged 5 commits into from
Oct 2, 2024
Merged
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
232 changes: 232 additions & 0 deletions src/simplicial-hott/09-yoneda.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -892,6 +892,28 @@ types are contractible.
:= (x : A) → is-contr (hom A a x)
```

Initial objects map to initial objects by equivalences.

```rzk
#def is-inital-equiv-is-initial uses (extext)
( A B : U)
( e : Equiv A B)
( a : A)
( is-initial-a : is-initial A a)
:
is-initial B (first e a)
:=
\ b →
ind-has-section-equiv A B e
( \ b → is-contr (hom B (first e a) b))
( \ a' → is-contr-equiv-is-contr (hom A a a')
( hom B (first e a) (first e a'))
( ap-hom A B (first e) a a'
, is-equiv-ap-hom-is-equiv extext A B (first e) (second e) a a')
( is-initial-a a'))
( b)
```

Initial objects satisfy an induction principle relative to covariant families.

```rzk
Expand Down Expand Up @@ -1114,6 +1136,28 @@ types are contractible.
:= (x : A) → is-contr (hom A x a)
```

Final objects map to final objects by equivalences.

```rzk
#def is-final-equiv-is-final uses (extext)
( A B : U)
( e : Equiv A B)
( a : A)
( is-final-a : is-final A a)
:
is-final B (first e a)
:=
\ b →
ind-has-section-equiv A B e
( \ b → is-contr (hom B b (first e a)))
( \ a' → is-contr-equiv-is-contr (hom A a' a)
( hom B (first e a') (first e a))
( ap-hom A B (first e) a' a
, is-equiv-ap-hom-is-equiv extext A B (first e) (second e) a' a)
( is-final-a a'))
( b)
```

Final objects satisfy an induction principle relative to contravariant families.

```rzk
Expand Down Expand Up @@ -1365,3 +1409,191 @@ condition a name.
:= Σ ((a , u) : Σ (x : A) , (C x))
, is-initial (Σ (x : A) , (C x)) (a , u)
```

As a representable family is fiberwise equivalent to a `#!rzk Σ (x : A) , C x`,
the total space of the family is equivalent to a coslice, and coslices have an
initial object by `#!rzk is-initial-id-hom-is-segal`.

```rzk
#def has-initial-tot-is-representable-family-is-segal uses (extext)
robin-carlier marked this conversation as resolved.
Show resolved Hide resolved
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( is-rep-C : is-representable-family A C)
: has-initial-tot A C
:=
( ( first is-rep-C
, evid
( A)
( first is-rep-C)
( C)
( equiv-for-is-representable-family A C is-rep-C))
, is-inital-equiv-is-initial
( coslice A (first is-rep-C))
( Σ ( x : A) , (C x))
( total-equiv-family-of-equiv
( A)
( \ x → hom A (first is-rep-C) x)
( C)
( second is-rep-C))
( ( first is-rep-C , id-hom A (first is-rep-C)))
( is-initial-id-hom-is-segal A is-segal-A (first is-rep-C)))

```

The other direction is a bit longer. We follow the proof of RS17 9.10: given
`#!rzk (a, u) : Σ (x : A) , C x` an initial object of `#!rzk Σ (x : A) , C x`,
evaluating `#!rzk yon` at `#!rzk u : C a` yields a family of maps
`#!rzk (x : A) → hom A a x → C x`. This is a contractible map as its fiber at
`#!rzk (b : A, v : C b)` is equivalent to the hom type
`#!rzk hom (Σ (x : A) , C x) (a, u) (b, v)` through the composite of
`#!rzk covariant-uniqueness-curried` and `#!rzk axiom-choice` and it is thus an
equivalence using `#!rzk is-equiv-is-contr-map`.

```rzk
#def is-representable-family-has-initial-tot
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( is-covariant-C : is-covariant A C)
( has-initial-tot-A : has-initial-tot A C)
: ( is-representable-family A C)
:=
( first (first has-initial-tot-A)
, \ b →
( ( yon
( A)
( is-segal-A)
( first (first has-initial-tot-A))
( C)
( is-covariant-C)
( second(first has-initial-tot-A))
( b))
, is-equiv-is-contr-map
( hom A (first (first has-initial-tot-A)) b)
( C b)
( yon
( A)
( is-segal-A)
( first (first has-initial-tot-A))
( C)
( is-covariant-C)
( second(first has-initial-tot-A))
robin-carlier marked this conversation as resolved.
Show resolved Hide resolved
( b))
( \ v →
is-contr-equiv-is-contr
( hom (Σ (a : A) , (C a)) (first has-initial-tot-A) (b , v))
( fib
( hom A (first (first has-initial-tot-A)) b)
( C b)
( yon
( A)
( is-segal-A)
( first (first has-initial-tot-A))
( C)
( is-covariant-C)
( second(first has-initial-tot-A))
( b))
( v))
( equiv-comp
( hom (Σ (a : A) , (C a)) (first has-initial-tot-A) (b , v))
( Σ ( f : hom A (first (first has-initial-tot-A)) b)
, dhom
( A)
( first (first has-initial-tot-A))
( b)
( f)
( C)
( second(first has-initial-tot-A))
( v))
( fib
( hom A (first (first has-initial-tot-A)) b)
( C b)
( yon
( A)
( is-segal-A)
( first (first has-initial-tot-A))
( C)
( is-covariant-C)
( second(first has-initial-tot-A))
( b))
( v))
( axiom-choice
( 2)
( Δ¹)
( ∂Δ¹)
( \ _ → A)
( \ t x → C x)
( \ t →
recOR
( t ≡ 0₂ ↦ first (first has-initial-tot-A)
, t ≡ 1₂ ↦ b))
( \ t →
recOR
( t ≡ 0₂ ↦ second(first has-initial-tot-A)
, t ≡ 1₂ ↦ v)))
( total-equiv-family-of-equiv
( hom A (first (first has-initial-tot-A)) b)
( \ f →
dhom
( A)
( first (first has-initial-tot-A))
( b)
( f)
( C)
( second(first has-initial-tot-A))
( v))
( \ f →
covariant-transport
( A)
( first (first has-initial-tot-A))
( b)
( f)
( C)
( is-covariant-C)
( second(first has-initial-tot-A))
= v)
( \ f →
( covariant-uniqueness-curried
( A)
( first (first has-initial-tot-A))
( b)
( f)
( C)
( is-covariant-C)
( second(first has-initial-tot-A))
( v)
, is-equiv-covariant-uniqueness-curried
( A)
( first (first has-initial-tot-A))
( b)
( f)
( C)
( is-covariant-C)
( second(first has-initial-tot-A))
( v)))))
( second has-initial-tot-A (b , v)))))
```

```rzk title="RS17, Proposition 9.10"
#def is-representable-iff-has-initial-tot uses (extext)
( A : U)
( is-segal-A : is-segal A)
( C : A → U)
( is-covariant-C : is-covariant A C)
: iff (is-representable-family A C) (has-initial-tot A C)
:=
( \ is-rep-C →
has-initial-tot-is-representable-family-is-segal
( A)
( is-segal-A)
( C)
( is-rep-C)
, \ has-initial-tot-A →
is-representable-family-has-initial-tot
( A)
( is-segal-A)
( C)
( is-covariant-C)
( has-initial-tot-A))
```
Loading