Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: clean and speed up fhe training tests #724

Merged
merged 1 commit into from
Jun 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/concrete/ml/deployment/fhe_client_server.py
Original file line number Diff line number Diff line change
Expand Up @@ -470,6 +470,6 @@ def deserialize_decrypt_dequantize(

# In training mode, note that this step does not make much sense for now. Still, nothing
# breaks since QuantizedModule don't do anything in post-processing
result = self.model.post_processing(*result)
result_post_processed = self.model.post_processing(*result)
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.


return result
return result_post_processed
2 changes: 0 additions & 2 deletions src/concrete/ml/quantization/quantized_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -887,8 +887,6 @@ def compile(
global_p_error=global_p_error,
verbose=verbose,
single_precision=False,
fhe_simulation=False,
fhe_execution=True,
compress_input_ciphertexts=enable_input_compression,
compress_evaluation_keys=enable_key_compression,
)
Expand Down
2 changes: 0 additions & 2 deletions src/concrete/ml/sklearn/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -581,8 +581,6 @@ def compile(
global_p_error=global_p_error,
verbose=verbose,
single_precision=False,
fhe_simulation=False,
fhe_execution=True,
compress_input_ciphertexts=enable_input_compression,
compress_evaluation_keys=enable_key_compression,
)
Expand Down
8 changes: 7 additions & 1 deletion src/concrete/ml/sklearn/linear_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,6 +190,7 @@ def __init__(
self.learning_rate_value = 1.0
self.batch_size = 8
self.training_p_error = 0.01
self.training_fhe_configuration = None

self.fit_encrypted = fit_encrypted
self.parameters_range = parameters_range
Expand Down Expand Up @@ -344,10 +345,15 @@ def _get_training_quantized_module(
fit_bias=self.fit_intercept,
)

if self.training_fhe_configuration is None:
configuration = Configuration()
else:
configuration = self.training_fhe_configuration

# Enable the underlying FHE circuit to be composed with itself
# This feature is used in order to be able to iterate in the clear n times without having
# to encrypt/decrypt the weight/bias values between each loop
configuration = Configuration(composable=True, compress_evaluation_keys=True)
configuration.composable = True

composition_mapping = {0: 2, 1: 3}

Expand Down
2 changes: 1 addition & 1 deletion tests/deployment/test_client_server.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,11 +63,11 @@ def dev_send_clientspecs_and_modelspecs_to_client(self):
@pytest.mark.parametrize("model_class, parameters", MODELS_AND_DATASETS)
@pytest.mark.parametrize("n_bits", [2])
def test_client_server_sklearn_inference(
default_configuration,
model_class,
parameters,
n_bits,
load_data,
default_configuration,
check_is_good_execution_for_cml_vs_circuit,
check_array_equal,
check_float_array_equal,
Expand Down
22 changes: 20 additions & 2 deletions tests/sklearn/test_fhe_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -312,6 +312,7 @@ def check_encrypted_fit(
parameters_range,
max_iter,
fit_intercept,
configuration,
check_accuracy=None,
fhe=None,
partial_fit=False,
Expand Down Expand Up @@ -356,6 +357,8 @@ def check_encrypted_fit(
# We need to lower the p-error to make sure that the test passes
model.training_p_error = 1e-15

model.training_fhe_configuration = configuration

if partial_fit:
# Check that we can swap between disable and simulation modes without any impact on the
# final training performance
Expand Down Expand Up @@ -418,7 +421,13 @@ def check_encrypted_fit(
@pytest.mark.parametrize("label_offset", [0, 1])
@pytest.mark.parametrize("n_bits, max_iter, parameter_min_max", [pytest.param(7, 30, 1.0)])
def test_encrypted_fit_coherence(
fit_intercept, label_offset, n_bits, max_iter, parameter_min_max, check_accuracy
fit_intercept,
label_offset,
n_bits,
max_iter,
parameter_min_max,
check_accuracy,
simulation_configuration,
):
"""Test that encrypted fitting works properly."""

Expand All @@ -439,6 +448,7 @@ def test_encrypted_fit_coherence(
parameters_range,
max_iter,
fit_intercept,
simulation_configuration,
check_accuracy=check_accuracy,
fhe="disable",
)
Expand All @@ -453,6 +463,7 @@ def test_encrypted_fit_coherence(
parameters_range,
max_iter,
fit_intercept,
simulation_configuration,
check_accuracy=check_accuracy,
fhe="simulate",
)
Expand All @@ -474,6 +485,7 @@ def test_encrypted_fit_coherence(
parameters_range,
max_iter,
fit_intercept,
simulation_configuration,
check_accuracy=check_accuracy,
partial_fit=True,
)
Expand All @@ -496,6 +508,7 @@ def test_encrypted_fit_coherence(
parameters_range,
max_iter,
fit_intercept,
simulation_configuration,
check_accuracy=check_accuracy,
warm_fit=True,
init_kwargs=warm_fit_init_kwargs,
Expand All @@ -519,6 +532,7 @@ def test_encrypted_fit_coherence(
parameters_range,
first_iterations,
fit_intercept,
simulation_configuration,
check_accuracy=check_accuracy,
fhe="simulate",
)
Expand All @@ -542,6 +556,7 @@ def test_encrypted_fit_coherence(
parameters_range,
last_iterations,
fit_intercept,
simulation_configuration,
check_accuracy=check_accuracy,
fhe="simulate",
random_number_generator=rng_coef_init,
Expand Down Expand Up @@ -569,14 +584,15 @@ def test_encrypted_fit_coherence(
parameters_range,
max_iter,
fit_intercept,
simulation_configuration,
check_accuracy=None,
fhe="simulate",
init_kwargs=early_break_kwargs,
)


@pytest.mark.parametrize("n_bits, max_iter, parameter_min_max", [pytest.param(7, 2, 1.0)])
def test_encrypted_fit_in_fhe(n_bits, max_iter, parameter_min_max):
def test_encrypted_fit_in_fhe(n_bits, max_iter, parameter_min_max, default_configuration):
"""Test that encrypted fitting works properly when executed in FHE."""

# Model parameters
Expand All @@ -600,6 +616,7 @@ def test_encrypted_fit_in_fhe(n_bits, max_iter, parameter_min_max):
parameters_range,
max_iter,
fit_intercept,
default_configuration,
fhe="disable",
)
)
Expand All @@ -613,6 +630,7 @@ def test_encrypted_fit_in_fhe(n_bits, max_iter, parameter_min_max):
parameters_range,
max_iter,
fit_intercept,
default_configuration,
fhe="execute",
)

Expand Down
Loading