-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add PZMultiFieldRepeatingState Tests
- Loading branch information
Showing
2 changed files
with
192 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
module PZMultiFieldRepeatingStateTests | ||
using Test | ||
|
||
using Gridap, GridapDistributed, GridapPETSc, GridapSolvers, | ||
PartitionedArrays, LevelSetTopOpt, SparseMatricesCSR | ||
|
||
using Gridap.TensorValues, Gridap.Helpers | ||
|
||
## Parameters | ||
function main(;AD) | ||
el_size = (20,20) | ||
order = 1 | ||
xmax,ymax=(1.0,1.0) | ||
dom = (0,xmax,0,ymax) | ||
γ = 0.1 | ||
γ_reinit = 0.5 | ||
max_steps = floor(Int,order*minimum(el_size)/10) | ||
tol = 1/(5order^2)/minimum(el_size) | ||
η_coeff = 2 | ||
α_coeff = 4*max_steps*γ | ||
vf = 0.5 | ||
|
||
## FE Setup | ||
model = CartesianDiscreteModel(dom,el_size,isperiodic=(true,true)) | ||
el_Δ = get_el_Δ(model) | ||
f_Γ_D(x) = iszero(x) | ||
update_labels!(1,model,f_Γ_D,"origin") | ||
|
||
## Triangulations and measures | ||
Ω = Triangulation(model) | ||
dΩ = Measure(Ω,2*order) | ||
vol_D = sum(∫(1)dΩ) | ||
|
||
## Spaces | ||
reffe = ReferenceFE(lagrangian,VectorValue{2,Float64},order) | ||
reffe_scalar = ReferenceFE(lagrangian,Float64,order) | ||
V = TestFESpace(model,reffe;conformity=:H1,dirichlet_tags=["origin"]) | ||
U = TrialFESpace(V,VectorValue(0.0,0.0)) | ||
Q = TestFESpace(model,reffe_scalar;conformity=:H1,dirichlet_tags=["origin"]) | ||
P = TrialFESpace(Q,0) | ||
UP = MultiFieldFESpace([U,P]) | ||
VQ = MultiFieldFESpace([V,Q]) | ||
|
||
V_φ = TestFESpace(model,reffe_scalar) | ||
V_reg = TestFESpace(model,reffe_scalar) | ||
U_reg = TrialFESpace(V_reg) | ||
|
||
## Create FE functions | ||
φh = interpolate(initial_lsf(2,0.2),V_φ) | ||
|
||
## Interpolation and weak form | ||
interp = SmoothErsatzMaterialInterpolation(η = η_coeff*maximum(el_Δ),ϵ=10^-9) | ||
I,H,DH,ρ = interp.I,interp.H,interp.DH,interp.ρ | ||
|
||
## Material tensors | ||
C, e, κ = PZT5A_2D(); | ||
k0 = norm(C.data,Inf); | ||
α0 = norm(e.data,Inf); | ||
β0 = norm(κ.data,Inf); | ||
γ0 = β0*k0/α0^2; | ||
|
||
## Weak forms | ||
εᴹ = (SymTensorValue(1.0,0.0,0.0), | ||
SymTensorValue(0.0,0.0,1.0), | ||
SymTensorValue(0.0,1/2,0)) | ||
Eⁱ = (VectorValue(1.0,0.0,), | ||
VectorValue(0.0,1.0)) | ||
|
||
a((u,ϕ),(v,q),φ,dΩ) = ∫((I ∘ φ) * (1/k0*((C ⊙ ε(u)) ⊙ ε(v)) - | ||
1/α0*((-∇(ϕ) ⋅ e) ⊙ ε(v)) + | ||
-1/α0*((e ⋅² ε(u)) ⋅ -∇(q)) + | ||
-γ0/β0*((κ ⋅ -∇(ϕ)) ⋅ -∇(q))) )dΩ; | ||
|
||
l_ε = [((v,q),φ,dΩ) -> ∫(((I ∘ φ) * (-C ⊙ εᴹ[i] ⊙ ε(v) + k0/α0*(e ⋅² εᴹ[i]) ⋅ -∇(q))))dΩ for i = 1:3]; | ||
l_E = [((v,q),φ,dΩ) -> ∫((I ∘ φ) * ((Eⁱ[i] ⋅ e ⊙ ε(v) + k0/α0*(κ ⋅ Eⁱ[i]) ⋅ -∇(q))))dΩ for i = 1:2]; | ||
l = [l_ε; l_E] | ||
|
||
function Cᴴ(r,s,uϕ,φ,dΩ) | ||
u_s = uϕ[2s-1]; ϕ_s = uϕ[2s] | ||
∫(1/k0 * (I ∘ φ) * (((C ⊙ (1/k0*ε(u_s) + εᴹ[s])) ⊙ εᴹ[r]) - ((-1/α0*∇(ϕ_s) ⋅ e) ⊙ εᴹ[r])))dΩ; | ||
end | ||
|
||
function DCᴴ(r,s,q,uϕ,φ,dΩ) | ||
u_r = uϕ[2r-1]; ϕ_r = uϕ[2r] | ||
u_s = uϕ[2s-1]; ϕ_s = uϕ[2s] | ||
∫(- 1/k0 * q * ( | ||
(C ⊙ (1/k0*ε(u_s) + εᴹ[s])) ⊙ (1/k0*ε(u_r) + εᴹ[r]) - | ||
(-1/α0*∇(ϕ_s) ⋅ e) ⊙ (1/k0*ε(u_r) + εᴹ[r]) - | ||
(e ⋅² (1/k0*ε(u_s) + εᴹ[s])) ⋅ (-1/α0*∇(ϕ_r)) - | ||
(κ ⋅ (-1/α0*∇(ϕ_s))) ⋅ (-1/α0*∇(ϕ_r)) | ||
) * (DH ∘ φ) * (norm ∘ ∇(φ)) | ||
)dΩ; | ||
end | ||
|
||
Bᴴ(uϕ,φ,dΩ) = 1/4*(Cᴴ(1,1,uϕ,φ,dΩ)+Cᴴ(2,2,uϕ,φ,dΩ)+2*Cᴴ(1,2,uϕ,φ,dΩ)) | ||
DBᴴ(q,uϕ,φ,dΩ) = 1/4*(DCᴴ(1,1,q,uϕ,φ,dΩ)+DCᴴ(2,2,q,uϕ,φ,dΩ)+2*DCᴴ(1,2,q,uϕ,φ,dΩ)) | ||
|
||
J(uϕ,φ,dΩ) = -1*Bᴴ(uϕ,φ,dΩ) | ||
DJ(q,uϕ,φ,dΩ) = -1*DBᴴ(q,uϕ,φ,dΩ) | ||
C1(uϕ,φ,dΩ) = ∫(((ρ ∘ φ) - vf)/vol_D)dΩ; | ||
DC1(q,uϕ,φ,dΩ) = ∫(-1/vol_D*q*(DH ∘ φ)*(norm ∘ ∇(φ)))dΩ | ||
|
||
## Finite difference solver and level set function | ||
stencil = HamiltonJacobiEvolution(FirstOrderStencil(2,Float64),model,V_φ,tol,max_steps) | ||
|
||
## Setup solver and FE operators | ||
state_map = RepeatingAffineFEStateMap(5,a,l,UP,VQ,V_φ,U_reg,φh,dΩ) | ||
pcfs = if AD | ||
PDEConstrainedFunctionals(J,[C1],state_map;analytic_dJ=DJ,analytic_dC=[DC1]) | ||
else | ||
PDEConstrainedFunctionals(J,[C1],state_map) | ||
end | ||
|
||
## Hilbertian extension-regularisation problems | ||
α = α_coeff*maximum(el_Δ) | ||
a_hilb(p,q) = ∫(α^2*∇(p)⋅∇(q) + p*q)dΩ; | ||
vel_ext = VelocityExtension(a_hilb,U_reg,V_reg) | ||
|
||
# ## Optimiser | ||
optimiser = HilbertianProjection(pcfs,stencil,vel_ext,φh;γ,γ_reinit,verbose=true) | ||
vars, state = iterate(optimiser) | ||
vars, state = iterate(optimiser,state) | ||
true | ||
end | ||
|
||
function PZT5A_2D() | ||
ε_0 = 8.854e-12; | ||
C_Voigt = [12.0400e10 7.51000e10 0.0 | ||
7.51000e10 11.0900e10 0.0 | ||
0.0 0.0 2.1000e10] | ||
e_Voigt = [0.0 0.0 12.30000 | ||
-5.40000 15.80000 0.0] | ||
K_Voigt = [540*ε_0 0 | ||
0 830*ε_0] | ||
C = voigt2tensor4(C_Voigt) | ||
e = voigt2tensor3(e_Voigt) | ||
κ = voigt2tensor2(K_Voigt) | ||
C,e,κ | ||
end | ||
|
||
""" | ||
Given a material constant given in Voigt notation, | ||
return a SymFourthOrderTensorValue using ordering from Gridap | ||
""" | ||
function voigt2tensor4(A::Array{M,2}) where M | ||
if isequal(size(A),(3,3)) | ||
return SymFourthOrderTensorValue(A[1,1], A[3,1], A[2,1], | ||
A[1,3], A[3,3], A[2,3], | ||
A[1,2], A[3,2], A[2,2]) | ||
elseif isequal(size(A),(6,6)) | ||
return SymFourthOrderTensorValue(A[1,1], A[6,1], A[5,1], A[2,1], A[4,1], A[3,1], | ||
A[1,6], A[6,6], A[5,6], A[2,6], A[4,6], A[3,6], | ||
A[1,5], A[6,5], A[5,5], A[2,5], A[4,5], A[3,5], | ||
A[1,2], A[6,2], A[5,2], A[2,2], A[4,2], A[3,2], | ||
A[1,4], A[6,4], A[5,4], A[2,4], A[4,4], A[3,4], | ||
A[1,3], A[6,3], A[5,3], A[2,3], A[4,3], A[3,3]) | ||
else | ||
@notimplemented | ||
end | ||
end | ||
|
||
""" | ||
Given a material constant given in Voigt notation, | ||
return a ThirdOrderTensorValue using ordering from Gridap | ||
""" | ||
function voigt2tensor3(A::Array{M,2}) where M | ||
if isequal(size(A),(2,3)) | ||
return ThirdOrderTensorValue(A[1,1], A[2,1], A[1,3], A[2,3], A[1,3], A[2,3], A[1,2], A[2,2]) | ||
elseif isequal(size(A),(3,6)) | ||
return ThirdOrderTensorValue( | ||
A[1,1], A[2,1], A[3,1], A[1,6], A[2,6], A[3,6], A[1,5], A[2,5], A[3,5], | ||
A[1,6], A[2,6], A[3,6], A[1,2], A[2,2], A[3,2], A[1,4], A[2,4], A[3,4], | ||
A[1,5], A[2,5], A[3,5], A[1,4], A[2,4], A[3,4], A[1,3], A[2,3], A[3,3]) | ||
else | ||
@notimplemented | ||
end | ||
end | ||
|
||
""" | ||
Given a material constant given in Voigt notation, | ||
return a SymTensorValue using ordering from Gridap | ||
""" | ||
function voigt2tensor2(A::Array{M,2}) where M | ||
return TensorValue(A) | ||
end | ||
|
||
# Test that these run successfully | ||
@test main(;AD=true) | ||
@test main(;AD=false) | ||
|
||
end # module |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters