Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Part F of transition to support modernize-use-default-member-init #5815

Merged
Merged
30 changes: 13 additions & 17 deletions recognition/include/pcl/recognition/cg/geometric_consistency.h
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
*
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
Expand Down Expand Up @@ -44,7 +44,7 @@

namespace pcl
{

/** \brief Class implementing a 3D correspondence grouping enforcing geometric consistency among feature correspondences
*
* \author Federico Tombari, Tommaso Cavallari, Aitor Aldoma
Expand All @@ -61,14 +61,10 @@ namespace pcl
using SceneCloudConstPtr = typename pcl::CorrespondenceGrouping<PointModelT, PointSceneT>::SceneCloudConstPtr;

/** \brief Constructor */
GeometricConsistencyGrouping ()
: gc_threshold_ (3)
, gc_size_ (1.0)
{}
GeometricConsistencyGrouping () = default;


/** \brief Sets the minimum cluster size
* \param[in] threshold the minimum cluster size
* \param[in] threshold the minimum cluster size
*/
inline void
setGCThreshold (int threshold)
Expand All @@ -77,7 +73,7 @@ namespace pcl
}

/** \brief Gets the minimum cluster size.
*
*
* \return the minimum cluster size used by GC.
*/
inline int
Expand All @@ -87,7 +83,7 @@ namespace pcl
}

/** \brief Sets the consensus set resolution. This should be in metric units.
*
*
* \param[in] gc_size consensus set resolution.
*/
inline void
Expand All @@ -97,7 +93,7 @@ namespace pcl
}

/** \brief Gets the consensus set resolution.
*
*
* \return the consensus set resolution.
*/
inline double
Expand All @@ -107,7 +103,7 @@ namespace pcl
}

/** \brief The main function, recognizes instances of the model into the scene set by the user.
*
*
* \param[out] transformations a vector containing one transformation matrix for each instance of the model recognized into the scene.
*
* \return true if the recognition had been successful or false if errors have occurred.
Expand All @@ -116,7 +112,7 @@ namespace pcl
recognize (std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > &transformations);

/** \brief The main function, recognizes instances of the model into the scene set by the user.
*
*
* \param[out] transformations a vector containing one transformation matrix for each instance of the model recognized into the scene.
* \param[out] clustered_corrs a vector containing the correspondences for each instance of the model found within the input data (the same output of clusterCorrespondences).
*
Expand All @@ -131,19 +127,19 @@ namespace pcl
using CorrespondenceGrouping<PointModelT, PointSceneT>::model_scene_corrs_;

/** \brief Minimum cluster size. It shouldn't be less than 3, since at least 3 correspondences are needed to compute the 6DOF pose */
int gc_threshold_;
int gc_threshold_{3};

/** \brief Resolution of the consensus set used to cluster correspondences together*/
double gc_size_;
double gc_size_{1.0};

/** \brief Transformations found by clusterCorrespondences method. */
std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > found_transformations_;

/** \brief Cluster the input correspondences in order to distinguish between different instances of the model into the scene.
*
*
* \param[out] model_instances a vector containing the clustered correspondences for each model found on the scene.
* \return true if the clustering had been successful or false if errors have occurred.
*/
*/
void
clusterCorrespondences (std::vector<Correspondences> &model_instances) override;
};
Expand Down
28 changes: 10 additions & 18 deletions recognition/include/pcl/recognition/cg/hough_3d.h
Original file line number Diff line number Diff line change
Expand Up @@ -118,10 +118,10 @@ namespace pcl
Eigen::Vector3i bin_count_;

/** \brief Used to access hough_space_ as if it was a matrix. */
int partial_bin_products_[4];
int partial_bin_products_[4]{};

/** \brief Total number of bins in the Hough Space. */
int total_bins_count_;
int total_bins_count_{0};

/** \brief The Hough Space. */
std::vector<double> hough_space_;
Expand Down Expand Up @@ -166,14 +166,6 @@ namespace pcl
Hough3DGrouping ()
: input_rf_ ()
, scene_rf_ ()
, needs_training_ (true)
,hough_threshold_ (-1)
, hough_bin_size_ (1.0)
, use_interpolation_ (true)
, use_distance_weight_ (false)
, local_rf_normals_search_radius_ (0.0f)
, local_rf_search_radius_ (0.0f)
, hough_space_initialized_ (false)
{}

/** \brief Provide a pointer to the input dataset.
Expand Down Expand Up @@ -445,28 +437,28 @@ namespace pcl
SceneRfCloudConstPtr scene_rf_;

/** \brief If the training of the Hough space is needed; set on change of either the input cloud or the input_rf. */
bool needs_training_;
bool needs_training_{true};

/** \brief The result of the training. The vector between each model point and the centroid of the model adjusted by its local reference frame.*/
std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > model_votes_;

/** \brief The minimum number of votes in the Hough space needed to infer the presence of a model instance into the scene cloud. */
double hough_threshold_;
double hough_threshold_{-1.0};

/** \brief The size of each bin of the hough space. */
double hough_bin_size_;
double hough_bin_size_{1.0};

/** \brief Use the interpolation between neighboring Hough bins when casting votes. */
bool use_interpolation_;
bool use_interpolation_{true};

/** \brief Use the weighted correspondence distance when casting votes. */
bool use_distance_weight_;
bool use_distance_weight_{false};

/** \brief Normals search radius for the potential Rf calculation. */
float local_rf_normals_search_radius_;
float local_rf_normals_search_radius_{0.0f};

/** \brief Search radius for the potential Rf calculation. */
float local_rf_search_radius_;
float local_rf_search_radius_{0.0f};

/** \brief The Hough space. */
pcl::recognition::HoughSpace3D::Ptr hough_space_;
Expand All @@ -477,7 +469,7 @@ namespace pcl
/** \brief Whether the Hough space already contains the correct votes for the current input parameters and so the cluster and recognize calls don't need to recompute each value.
* Reset on the change of any parameter except the hough_threshold.
*/
bool hough_space_initialized_;
bool hough_space_initialized_{false};

/** \brief Cluster the input correspondences in order to distinguish between different instances of the model into the scene.
*
Expand Down
14 changes: 5 additions & 9 deletions recognition/include/pcl/recognition/color_gradient_modality.h
Original file line number Diff line number Diff line change
Expand Up @@ -240,7 +240,7 @@ namespace pcl
private:

/** \brief Determines whether variable numbers of features are extracted or not. */
bool variable_feature_nr_;
bool variable_feature_nr_{false};

/** \brief Stores a smoothed version of the input cloud. */
pcl::PointCloud<pcl::RGB>::Ptr smoothed_input_;
Expand All @@ -249,15 +249,15 @@ namespace pcl
FeatureSelectionMethod feature_selection_method_;

/** \brief The threshold applied on the gradient magnitudes (for quantization). */
float gradient_magnitude_threshold_;
float gradient_magnitude_threshold_{10.0f};
/** \brief The threshold applied on the gradient magnitudes for feature extraction. */
float gradient_magnitude_threshold_feature_extraction_;
float gradient_magnitude_threshold_feature_extraction_{55.0f};

/** \brief The point cloud which holds the max-RGB gradients. */
pcl::PointCloud<pcl::GradientXY> color_gradients_;

/** \brief The spreading size. */
std::size_t spreading_size_;
std::size_t spreading_size_{8};

/** \brief The map which holds the quantized max-RGB gradients. */
pcl::QuantizedMap quantized_color_gradients_;
Expand All @@ -274,12 +274,8 @@ namespace pcl
template <typename PointInT>
pcl::ColorGradientModality<PointInT>::
ColorGradientModality ()
: variable_feature_nr_ (false)
, smoothed_input_ (new pcl::PointCloud<pcl::RGB> ())
: smoothed_input_ (new pcl::PointCloud<pcl::RGB> ())
, feature_selection_method_ (DISTANCE_MAGNITUDE_SCORE)
, gradient_magnitude_threshold_ (10.0f)
, gradient_magnitude_threshold_feature_extraction_ (55.0f)
, spreading_size_ (8)
{
}

Expand Down
34 changes: 17 additions & 17 deletions recognition/include/pcl/recognition/distance_map.h
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
Expand Down Expand Up @@ -40,43 +40,43 @@
namespace pcl
{

/** \brief Represents a distance map obtained from a distance transformation.
/** \brief Represents a distance map obtained from a distance transformation.
* \author Stefan Holzer
*/
class DistanceMap
{
public:
/** \brief Constructor. */
DistanceMap () : data_ (0), width_ (0), height_ (0) {}
DistanceMap () : data_ (0) {}
/** \brief Destructor. */
virtual ~DistanceMap () = default;

/** \brief Returns the width of the map. */
inline std::size_t
inline std::size_t
getWidth () const
{
return (width_);
return (width_);
}

/** \brief Returns the height of the map. */
inline std::size_t
inline std::size_t
getHeight () const
{
return (height_);
{
return (height_);
}

/** \brief Returns a pointer to the beginning of map. */
inline float *
getData ()
{
inline float *
getData ()
{
return (data_.data());
}

/** \brief Resizes the map to the specified size.
* \param[in] width the new width of the map.
* \param[in] height the new height of the map.
*/
void
void
resize (const std::size_t width, const std::size_t height)
{
data_.resize (width*height);
Expand All @@ -88,7 +88,7 @@ namespace pcl
* \param[in] col_index the column index of the element to access.
* \param[in] row_index the row index of the element to access.
*/
inline float &
inline float &
operator() (const std::size_t col_index, const std::size_t row_index)
{
return (data_[row_index*width_ + col_index]);
Expand All @@ -98,7 +98,7 @@ namespace pcl
* \param[in] col_index the column index of the element to access.
* \param[in] row_index the row index of the element to access.
*/
inline const float &
inline const float &
operator() (const std::size_t col_index, const std::size_t row_index) const
{
return (data_[row_index*width_ + col_index]);
Expand All @@ -108,9 +108,9 @@ namespace pcl
/** \brief The storage for the distance map data. */
std::vector<float> data_;
/** \brief The width of the map. */
std::size_t width_;
std::size_t width_{0};
/** \brief The height of the map. */
std::size_t height_;
std::size_t height_{0};
};

}
35 changes: 3 additions & 32 deletions recognition/include/pcl/recognition/impl/implicit_shape_model.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -49,15 +49,7 @@

//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT>
pcl::features::ISMVoteList<PointT>::ISMVoteList () :
votes_ (new pcl::PointCloud<pcl::InterestPoint> ()),
tree_is_valid_ (false),
votes_origins_ (new pcl::PointCloud<PointT> ()),
votes_class_ (0),
k_ind_ (0),
k_sqr_dist_ (0)
{
}
pcl::features::ISMVoteList<PointT>::ISMVoteList() = default;

//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT>
Expand Down Expand Up @@ -297,18 +289,7 @@ pcl::features::ISMVoteList<PointT>::getNumberOfVotes ()
}

//////////////////////////////////////////////////////////////////////////////////////////////
pcl::features::ISMModel::ISMModel () :
statistical_weights_ (0),
learned_weights_ (0),
classes_ (0),
sigmas_ (0),
clusters_ (0),
number_of_classes_ (0),
number_of_visual_words_ (0),
number_of_clusters_ (0),
descriptors_dimension_ (0)
{
}
pcl::features::ISMModel::ISMModel () = default;

//////////////////////////////////////////////////////////////////////////////////////////////
pcl::features::ISMModel::ISMModel (ISMModel const & copy)
Expand Down Expand Up @@ -546,17 +527,7 @@ pcl::features::ISMModel::operator = (const pcl::features::ISMModel& other)

//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT>
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::ImplicitShapeModelEstimation () :
training_clouds_ (0),
training_classes_ (0),
training_normals_ (0),
training_sigmas_ (0),
sampling_size_ (0.1f),
feature_estimator_ (),
number_of_clusters_ (184),
n_vot_ON_ (true)
{
}
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::ImplicitShapeModelEstimation () = default;

//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -180,11 +180,7 @@ SimpleOctree<NodeData, NodeDataCreator, Scalar>::Node::makeNeighbors (Node* node


template<typename NodeData, typename NodeDataCreator, typename Scalar> inline
SimpleOctree<NodeData, NodeDataCreator, Scalar>::SimpleOctree ()
: tree_levels_ (0),
root_ (nullptr)
{
}
SimpleOctree<NodeData, NodeDataCreator, Scalar>::SimpleOctree () = default;


template<typename NodeData, typename NodeDataCreator, typename Scalar> inline
Expand Down
Loading