Releases: ffiirree/cv-models
Releases · ffiirree/cv-models
ConvNeXt Weights from PyTorch
ConvNeXt Weights from PyTorch
ViT Weights from PyTorch
Fork weigths of ViT from torchvison.
ShuffleNets
Model |
Top-1@Paper |
Top-1 |
Top-5 |
ShuffleNetV2 x2.0 |
74.9 |
74.368 |
92.050 |
ShuffleNetV2 x2.0 + SDKs |
- |
73.870 |
91.674 |
EfficientNets
Model |
Top-1@Paper |
Top-1 |
Top-5 |
EfficientNet-B0 |
77.3 |
76.256 |
93.174 |
EfficientNet-B0 + SDKs |
- |
75.764 |
92.830 |
ResNets Weights
Model |
Top-1@Paper |
Top-1 |
Top-5 |
ResNet18 V1 |
69.7 |
71.060 |
89.922 |
Training
Procedure |
|
learning rate |
0.2 |
batch size |
512 |
weight decay |
1e-4 |
lr scheduler |
cosine |
min lr |
1e-6 |
optimizer |
SGD with momentum 0.9 |
epochs |
100 |
warmup epochs |
5 |
lable smoothing |
0.1 |
mixup |
- |
cutmix |
- |
amp |
True |
image processing |
RandomResizedCrop/RandomHorizontalFlip |
data augment |
- |
dropout rate |
0.0 |
drop path rate |
- |
crop size |
224 |
val-resize size |
256 |
val-resize size |
224 |
VGNets Weights
Model |
Params(M) |
FLOPS(M) |
Top-1 |
Top-5 |
VGNetG-1.0MP |
0.999 |
144 |
68.128 |
88.312 |
VGNetG-1.0MP + SE |
1.143 |
145 |
70.122 |
89.524 |
VGNetG-1.5MP |
1.502 |
191 |
70.494 |
89.684 |
VGNetG-1.5MP + SE |
1.702 |
192 |
72.422 |
90.664 |
VGNetG-2.0MP |
2.006 |
304 |
72.314 |
90.730 |
VGNetG-2.0MP + SE |
2.345 |
306 |
74.324 |
91.788 |
VGNetG-2.5MP |
2.493 |
399 |
73.740 |
91.516 |
VGNetG-2.5MP + SE |
2.940 |
401 |
75.590 |
92.568 |
Training
Procedure |
|
learning rate |
0.2 |
batch size |
512 |
weight decay |
1e-4 |
no bias & bn decay |
True |
lr scheduler |
cosine |
min lr |
1e-6 |
optimizer |
SGD with momentum 0.9 |
warmup epochs |
5 |
lable smoothing |
0.1 |
mixup |
- |
cutmix |
- |
amp |
True |
image processing |
RandomResizedCrop/RandomHorizontalFlip |
data augment |
- |
dropout rate |
0.0 |
drop path rate |
- |
crop size |
192 |
val-resize size |
232 |
val-resize size |
224 |
RegNets Weights
Model |
Top-1@Paper |
Top-1 |
Top-5 |
RegNetX 400MF |
72.7 |
73.156 |
91.320 |
Training
V1 & V2
Procedure |
|
learning rate |
0.2 |
batch size |
512 |
weight decay |
1e-4 |
lr scheduler |
cosine |
min lr |
1e-6 |
optimizer |
SGD with momentum 0.9 |
epochs |
100 |
warmup epochs |
5 |
lable smoothing |
0.1 |
mixup |
- |
cutmix |
- |
amp |
True |
image processing |
RandomResizedCrop/RandomHorizontalFlip |
data augment |
- |
dropout rate |
0.0 |
drop path rate |
- |
crop size |
224 |
val-resize size |
256 |
val-resize size |
224 |
MobileNets
Accuracy
Model |
Parms(M) |
FLOPS(M) |
Top-1@Paper |
Top-1 |
Top-5 |
MobileNet V1 x1.0 |
4.232 |
579 |
70.6 |
72.966(73.264@224/232) |
91.190 |
MobileNet V1 x0.75 |
2.586 |
333 |
68.4 |
69.894 |
89.520 |
MobileNet V1 x0.5 |
1.332 |
155 |
63.7 |
65.590 |
86.336 |
MobileNet V1 x0.35 |
0.766 |
79 |
- |
59.328 |
82.068 |
MobileNet V2 x1.0 |
3.505 |
314 |
72.0 |
72.154(224/232) |
90.736 |
MobileNet V2 x0.75 |
2.636 |
221 |
- |
68.738 |
88.330 |
MobileNet V2 x0.5 |
1.969 |
104 |
- |
63.926 |
85.154 |
MobileNet V2 x0.35 |
1.677 |
65.074 |
- |
59.240 |
81.782 |
Training
Procedure |
|
learning rate |
0.2 |
batch size |
512 |
lr scheduler |
cosine |
min lr |
1e-6 |
optimizer |
SGD with momentum 0.9 |
weight decay |
1e-4 |
epochs |
100 |
warmup epochs |
5 |
lable smoothing |
0.1 |
mixup |
- |
cutmix |
- |
amp |
True |
image processing |
RandomResizedCrop/RandomHorizontalFlip |
data augment |
- |
dropout rate |
0.0 |
drop path rate |
- |
crop size |
224 |
val-resize size |
256 |
val-resize size |
224 |
MobileNet V1 x1.0
Procedure |
|
crop size |
192 |
val-resize size |
232 |
val-resize size |
192 |
V2
Procedure |
|
weight decay |
1e-5 |
data augment |
normal |