Skip to content

Releases: ffiirree/cv-models

ConvNeXt Weights from PyTorch

12 Dec 10:54
Compare
Choose a tag to compare
Pre-release

ConvNeXt Weights from PyTorch

ViT Weights from PyTorch

08 Dec 16:50
Compare
Choose a tag to compare
Pre-release

Fork weigths of ViT from torchvison.

ShuffleNets

23 Jan 12:56
Compare
Choose a tag to compare
ShuffleNets Pre-release
Pre-release
Model Top-1@Paper Top-1 Top-5
ShuffleNetV2 x2.0 74.9 74.368 92.050
ShuffleNetV2 x2.0 + SDKs - 73.870 91.674

EfficientNets

23 Jan 17:12
Compare
Choose a tag to compare
EfficientNets Pre-release
Pre-release
Model Top-1@Paper Top-1 Top-5
EfficientNet-B0 77.3 76.256 93.174
EfficientNet-B0 + SDKs - 75.764 92.830

ResNets Weights

01 Dec 07:51
Compare
Choose a tag to compare
ResNets Weights Pre-release
Pre-release
Model Top-1@Paper Top-1 Top-5
ResNet18 V1 69.7 71.060 89.922

Training

Procedure
learning rate 0.2
batch size 512
weight decay 1e-4
lr scheduler cosine
min lr 1e-6
optimizer SGD with momentum 0.9
epochs 100
warmup epochs 5
lable smoothing 0.1
mixup -
cutmix -
amp True
image processing RandomResizedCrop/RandomHorizontalFlip
data augment -
dropout rate 0.0
drop path rate -
crop size 224
val-resize size 256
val-resize size 224

VGNets Weights

28 Nov 13:04
Compare
Choose a tag to compare
VGNets Weights Pre-release
Pre-release
Model Params(M) FLOPS(M) Top-1 Top-5
VGNetG-1.0MP 0.999 144 68.128 88.312
VGNetG-1.0MP + SE 1.143 145 70.122 89.524
VGNetG-1.5MP 1.502 191 70.494 89.684
VGNetG-1.5MP + SE 1.702 192 72.422 90.664
VGNetG-2.0MP 2.006 304 72.314 90.730
VGNetG-2.0MP + SE 2.345 306 74.324 91.788
VGNetG-2.5MP 2.493 399 73.740 91.516
VGNetG-2.5MP + SE 2.940 401 75.590 92.568

Training

Procedure
learning rate 0.2
batch size 512
weight decay 1e-4
no bias & bn decay True
lr scheduler cosine
min lr 1e-6
optimizer SGD with momentum 0.9
warmup epochs 5
lable smoothing 0.1
mixup -
cutmix -
amp True
image processing RandomResizedCrop/RandomHorizontalFlip
data augment -
dropout rate 0.0
drop path rate -
crop size 192
val-resize size 232
val-resize size 224

RegNets Weights

22 Nov 12:13
Compare
Choose a tag to compare
RegNets Weights Pre-release
Pre-release
Model Top-1@Paper Top-1 Top-5
RegNetX 400MF 72.7 73.156 91.320

Training

V1 & V2

Procedure
learning rate 0.2
batch size 512
weight decay 1e-4
lr scheduler cosine
min lr 1e-6
optimizer SGD with momentum 0.9
epochs 100
warmup epochs 5
lable smoothing 0.1
mixup -
cutmix -
amp True
image processing RandomResizedCrop/RandomHorizontalFlip
data augment -
dropout rate 0.0
drop path rate -
crop size 224
val-resize size 256
val-resize size 224

MobileNets

21 Sep 11:32
Compare
Choose a tag to compare
MobileNets Pre-release
Pre-release

Accuracy

Model Parms(M) FLOPS(M) Top-1@Paper Top-1 Top-5
MobileNet V1 x1.0 4.232 579 70.6 72.966(73.264@224/232) 91.190
MobileNet V1 x0.75 2.586 333 68.4 69.894 89.520
MobileNet V1 x0.5 1.332 155 63.7 65.590 86.336
MobileNet V1 x0.35 0.766 79 - 59.328 82.068
MobileNet V2 x1.0 3.505 314 72.0 72.154(224/232) 90.736
MobileNet V2 x0.75 2.636 221 - 68.738 88.330
MobileNet V2 x0.5 1.969 104 - 63.926 85.154
MobileNet V2 x0.35 1.677 65.074 - 59.240 81.782

Training

Procedure
learning rate 0.2
batch size 512
lr scheduler cosine
min lr 1e-6
optimizer SGD with momentum 0.9
weight decay 1e-4
epochs 100
warmup epochs 5
lable smoothing 0.1
mixup -
cutmix -
amp True
image processing RandomResizedCrop/RandomHorizontalFlip
data augment -
dropout rate 0.0
drop path rate -
crop size 224
val-resize size 256
val-resize size 224

MobileNet V1 x1.0

Procedure
crop size 192
val-resize size 232
val-resize size 192

V2

Procedure
weight decay 1e-5
data augment normal