Skip to content

Commit

Permalink
Merge pull request #565 from una-auxme/562-seperate-tasks-from-lidar_…
Browse files Browse the repository at this point in the history
…distance-in-seperate-nodes-for-better-performance

fixed lidar_distance node speed by removing for loop
  • Loading branch information
SirMDA authored Dec 12, 2024
2 parents d63c492 + eefcd29 commit 52ca2a9
Showing 1 changed file with 61 additions and 50 deletions.
111 changes: 61 additions & 50 deletions code/perception/src/lidar_distance.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import rospy
import ros_numpy
import numpy as np
import lidar_filter_utility
from lidar_filter_utility import bounding_box, remove_field_name
from sensor_msgs.msg import PointCloud2, Image as ImageMsg
from sklearn.cluster import DBSCAN
from cv_bridge import CvBridge
Expand Down Expand Up @@ -189,14 +189,12 @@ def calculate_image(self, coordinates, focus):
return None

# Apply bounding box filter
reconstruct_bit_mask = lidar_filter_utility.bounding_box(coordinates, **params)
reconstruct_bit_mask = bounding_box(coordinates, **params)
reconstruct_coordinates = coordinates[reconstruct_bit_mask]

# Remove the "intensity" field and convert to a NumPy array
reconstruct_coordinates_xyz = np.array(
lidar_filter_utility.remove_field_name(
reconstruct_coordinates, "intensity"
).tolist()
remove_field_name(reconstruct_coordinates, "intensity").tolist()
)

# Reconstruct the image based on the focus
Expand Down Expand Up @@ -256,51 +254,64 @@ def reconstruct_img_from_lidar(self, coordinates_xyz, focus):
img = np.zeros(shape=(720, 1280), dtype=np.float32)
dist_array = np.zeros(shape=(720, 1280, 3), dtype=np.float32)

# Process each point in the point cloud
for c in coordinates_xyz:
if focus == "Center": # Compute image for the center view
point = np.array([c[1], c[2], c[0], 1])
pixel = np.matmul(m, point) # Project 3D point to 2D image coordinates
x, y = int(pixel[0] / pixel[2]), int(
pixel[1] / pixel[2]
) # Normalize coordinates
if (
0 <= x <= 1280 and 0 <= y <= 720
): # Check if coordinates are within image bounds
img[719 - y][1279 - x] = c[0] # Set depth value
dist_array[719 - y][1279 - x] = np.array(
[c[0], c[1], c[2]], dtype=np.float32
)

if focus == "Back": # Compute image for the rear view
point = np.array([c[1], c[2], c[0], 1])
pixel = np.matmul(m, point)
x, y = int(pixel[0] / pixel[2]), int(pixel[1] / pixel[2])
if 0 <= x <= 1280 and 0 <= y < 720:
img[y][1279 - x] = -c[0]
dist_array[y][1279 - x] = np.array(
[-c[0], c[1], c[2]], dtype=np.float32
)

if focus == "Left": # Compute image for the left view
point = np.array([c[0], c[2], c[1], 1])
pixel = np.matmul(m, point)
x, y = int(pixel[0] / pixel[2]), int(pixel[1] / pixel[2])
if 0 <= x <= 1280 and 0 <= y <= 720:
img[719 - y][1279 - x] = c[1]
dist_array[y][1279 - x] = np.array(
[c[0], c[1], c[2]], dtype=np.float32
)

if focus == "Right": # Compute image for the right view
point = np.array([c[0], c[2], c[1], 1])
pixel = np.matmul(m, point)
x, y = int(pixel[0] / pixel[2]), int(pixel[1] / pixel[2])
if 0 <= x < 1280 and 0 <= y < 720:
img[y][1279 - x] = -c[1]
dist_array[y][1279 - x] = np.array(
[c[0], c[1], c[2]], dtype=np.float32
)
# Prepare points based on focus
if focus in ["Center", "Back"]:
points = np.column_stack(
(
coordinates_xyz[:, 1],
coordinates_xyz[:, 2],
coordinates_xyz[:, 0],
np.ones(coordinates_xyz.shape[0]),
)
)
elif focus in ["Left", "Right"]:
points = np.column_stack(
(
coordinates_xyz[:, 0],
coordinates_xyz[:, 2],
coordinates_xyz[:, 1],
np.ones(coordinates_xyz.shape[0]),
)
)
else:
rospy.logwarn(f"Unknown focus: {focus}. Skipping image calculation.")
return None

# Project 3D points to 2D image coordinates
pixels = np.dot(m, points.T).T
x = (pixels[:, 0] / pixels[:, 2]).astype(int)
y = (pixels[:, 1] / pixels[:, 2]).astype(int)

# Filter valid coordinates
valid_indices = (x >= 0) & (x < 1280) & (y >= 0) & (y < 720)
x = x[valid_indices]
y = y[valid_indices]
valid_coordinates = coordinates_xyz[valid_indices]

if focus == "Center":
img[719 - y, 1279 - x] = valid_coordinates[:, 0]
dist_array[719 - y, 1279 - x] = valid_coordinates
elif focus == "Back":
img[y, 1279 - x] = -valid_coordinates[:, 0]
dist_array[y, 1279 - x] = np.column_stack(
(
-valid_coordinates[:, 0],
valid_coordinates[:, 1],
valid_coordinates[:, 2],
)
)
elif focus == "Left":
img[719 - y, 1279 - x] = valid_coordinates[:, 1]
dist_array[719 - y, 1279 - x] = valid_coordinates
elif focus == "Right":
img[y, 1279 - x] = -valid_coordinates[:, 1]
dist_array[y, 1279 - x] = np.column_stack(
(
valid_coordinates[:, 0],
-valid_coordinates[:, 1],
valid_coordinates[:, 2],
)
)

return dist_array

Expand Down

0 comments on commit 52ca2a9

Please sign in to comment.