Skip to content

Commit

Permalink
Merge branch 'main' into 145-distance-of-objects
Browse files Browse the repository at this point in the history
  • Loading branch information
okrusch authored Jan 15, 2024
2 parents d6a6609 + bda0112 commit 5b2a367
Show file tree
Hide file tree
Showing 61 changed files with 299 additions and 885 deletions.
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -11,3 +11,5 @@ code/output

# Byte-compiled / optimized / DLL files
__pycache__/

*.tsv
4 changes: 4 additions & 0 deletions build/docker-compose.yml
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,10 @@ services:
# image: carlasim/carla:0.9.14
image: ghcr.io/una-auxme/paf23:leaderboard-2.0
init: true
deploy:
resources:
limits:
memory: 16G
expose:
- 2000
- 2001
Expand Down
2 changes: 1 addition & 1 deletion code/agent/launch/agent.launch
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
</include>

<!-- planning -->
<include file="$(find planning_runner)/launch/planning_runner.launch">
<include file="$(find planning)/launch/planning.launch">
</include>

<include file="$(find mock)/launch/mock.launch">
Expand Down
31 changes: 31 additions & 0 deletions code/agent/launch/agent_manual.launch
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
<launch>
<arg name="role_name" default="hero" />
<arg name="control_loop_rate" default="0.05" />

<!-- perception -->
<include file="$(find perception)/launch/perception.launch">
</include>

<!--
<include file="$(find planning_runner)/launch/planning_runner.launch">
</include>
<include file="$(find mock)/launch/mock.launch">
<arg name="control_loop_rate" value="$(arg control_loop_rate)"/>
<arg name="role_name" value="$(arg role_name)"/>
</include>
<include file="$(find acting)/launch/acting.launch">
<arg name="control_loop_rate" value="$(arg control_loop_rate)"/>
<arg name="role_name" value="$(arg role_name)"/>
</include>
-->

<node pkg="carla_manual_control" type="carla_manual_control.py" name="carla_manual_control_$(arg role_name)" output="screen">
<param name="role_name" value="$(arg role_name)"/>
</node>


<node pkg="rqt_gui" type="rqt_gui" name="rqt_gui"/>
<node type="rviz" name="rviz" pkg="rviz" args="-d $(find agent)/config/rviz_config.rviz" />
</launch>
1 change: 1 addition & 0 deletions code/perception/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@ add_message_files(
FILES
Waypoint.msg
LaneChange.msg
TrafficLightState.msg
MinDistance.msg
)

Expand Down
13 changes: 9 additions & 4 deletions code/perception/launch/perception.launch
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
<launch>
<arg name="role_name" default="hero" />
<arg name="control_loop_rate" default="0.1" />

<!--just for testing purposes -> Uncomment to use and see plots
<node pkg="perception" type="sensor_filter_debug.py" name="sensor_filter_debug" output="screen">
<param name="control_loop_rate" value="0.001" />
Expand All @@ -28,8 +28,7 @@
<param name="control_loop_rate" value="0.1" />
<param name="role_name" value="$(arg role_name)" />
</node>



<node pkg="perception" type="vision_node.py" name="VisionNode" output="screen">
<param name="role_name" value="$(arg role_name)" />
<param name="side" value="Center" />
Expand All @@ -53,9 +52,15 @@
Image-Segmentation:
- deeplabv3_resnet101
- yolov8x-seg -->

<param name="model" value="rtdetr-x" />
</node>

<node pkg="perception" type="traffic_light_node.py" name="TrafficLightNode" output="screen">
<param name="role_name" value="$(arg role_name)" />
<param name="side" value="Center" />
<param name="model" value="/workspace/code/perception/src/traffic_light_detection/models/model_acc_92.48_val_91.88.pt" />
</node>


<node pkg="perception" type="global_plan_distance_publisher.py" name="GlobalPlanDistance" output="screen">
Expand Down
5 changes: 5 additions & 0 deletions code/perception/msg/TrafficLightState.msg
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
int8 state
int8 GREEN=1
int8 YELLOW=4
int8 RED=2
int8 UNKNOWN=0
1 change: 0 additions & 1 deletion code/perception/src/traffic_light_detection/.gitignore
Original file line number Diff line number Diff line change
@@ -1,2 +1 @@
/dataset
/models
2 changes: 1 addition & 1 deletion code/perception/src/traffic_light_detection/dataset.dvc
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
outs:
- md5: 3a559397ebc58c1ecf142dea18d03367.dir
- md5: 86f14bb96e1ac5735051b8e873f07a9f.dir
size: 13745063
nfiles: 2723
hash: md5
Expand Down
23 changes: 12 additions & 11 deletions code/perception/src/traffic_light_detection/dvc.lock
Original file line number Diff line number Diff line change
Expand Up @@ -4,31 +4,32 @@ stages:
cmd: python src/traffic_light_detection/traffic_light_training.py
deps:
- path: dataset
md5: 3a559397ebc58c1ecf142dea18d03367.dir
hash: md5
md5: 86f14bb96e1ac5735051b8e873f07a9f.dir
size: 13745063
nfiles: 2723
- path: src
hash: md5
md5: b6c9cb867c89ad6e86403d9c33538136.dir
size: 23777
nfiles: 10
md5: 34c981a61e886a858d135daee17a82ba.dir
size: 35849
nfiles: 17
params:
params.yaml:
train:
epochs: 100
epochs: 20
batch_size: 32
outs:
- path: dvclive/metrics.json
hash: md5
md5: af33de699558fbfd3edee1607ba88f81
size: 218
md5: 8566265bcdc76cb55d17230f82fc1517
size: 219
- path: dvclive/plots
hash: md5
md5: 774919de9e9d6820ac6821d0819829c1.dir
size: 8900
md5: f8f99f42fc42e0ed3c80c8e8f05c1528.dir
size: 8870
nfiles: 4
- path: models
hash: md5
md5: ee67bac2f189d2cc5a199d91ba3295ac.dir
size: 10815
md5: 16f96ecc475d20123051719908af9d4d.dir
size: 11071
nfiles: 1
11 changes: 11 additions & 0 deletions code/perception/src/traffic_light_detection/dvclive/metrics.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
{
"train": {
"accuracy": 92.26495726495727,
"loss": 0.03128106306251298
},
"validation": {
"accuracy": 91.36125654450262,
"loss": 0.031184170882739323
},
"step": 99
}
Binary file not shown.
2 changes: 1 addition & 1 deletion code/perception/src/traffic_light_detection/params.yaml
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
train:
epochs: 100
epochs: 20
batch_size: 32
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ def __init__(self):
# Amount of epochs to train
# One epoch: Training with all images from training dataset once
self.NUM_WORKERS = 4
self.NUM_CLASSES = 4 # Traffic light states: green, yellow, red, back
self.NUM_CLASSES = 5 # States: green, yellow, red, back, side
self.NUM_CHANNELS = 3 # RGB encoded images

# Inference
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,12 @@

import torch.cuda
import torchvision.transforms as t
from data_generation.transforms import Normalize, ResizeAndPadToSquare, \
load_image
from traffic_light_detection.classification_model import ClassificationModel
from traffic_light_detection.src.traffic_light_detection.transforms \
import Normalize, ResizeAndPadToSquare, load_image
from traffic_light_detection.src.traffic_light_detection.classification_model \
import ClassificationModel
from torchvision.transforms import ToTensor
from traffic_light_config import TrafficLightConfig
from traffic_light_detection.src.traffic_light_config import TrafficLightConfig


def parse_args():
Expand Down Expand Up @@ -49,7 +50,8 @@ def __init__(self, model_path):
self.class_dict = {0: 'Backside',
1: 'Green',
2: 'Red',
3: 'Yellow'}
3: 'Side',
4: 'Yellow'}

def __call__(self, img):
"""
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,8 @@
import sys
import os
sys.path.append(os.path.abspath(sys.path[0] + '/..'))
from data_generation.transforms import Normalize, ResizeAndPadToSquare, \
load_image # noqa: E402
from traffic_light_detection.transforms import Normalize, \
ResizeAndPadToSquare, load_image # noqa: E402
from data_generation.weights_organizer import WeightsOrganizer # noqa: E402
from traffic_light_detection.classification_model import ClassificationModel \
# noqa: E402
Expand Down
57 changes: 57 additions & 0 deletions code/perception/src/traffic_light_node.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
#!/usr/bin/env python3

from ros_compatibility.node import CompatibleNode
import ros_compatibility as roscomp
from rospy.numpy_msg import numpy_msg
from sensor_msgs.msg import Image as ImageMsg
from perception.msg import TrafficLightState
from cv_bridge import CvBridge
from traffic_light_detection.src.traffic_light_detection.traffic_light_inference \
import TrafficLightInference # noqa: E501


class TrafficLightNode(CompatibleNode):
def __init__(self, name, **kwargs):
super().__init__(name, **kwargs)
# general setup
self.bridge = CvBridge()
self.role_name = self.get_param("role_name", "hero")
self.side = self.get_param("side", "Center")
self.classifier = TrafficLightInference(self.get_param("model", ""))

# publish / subscribe setup
self.setup_camera_subscriptions()
self.setup_traffic_light_publishers()

def setup_camera_subscriptions(self):
self.new_subscription(
msg_type=numpy_msg(ImageMsg),
callback=self.handle_camera_image,
topic=f"/paf/{self.role_name}/{self.side}/segmented_traffic_light",
qos_profile=1
)

def setup_traffic_light_publishers(self):
self.traffic_light_publisher = self.new_publisher(
msg_type=TrafficLightState,
topic=f"/paf/{self.role_name}/{self.side}/traffic_light_state",
qos_profile=1
)

def handle_camera_image(self, image):
result = self.classifier(self.bridge.imgmsg_to_cv2(image))

# 1: Green, 2: Red, 4: Yellow, 0: Unknown
msg = TrafficLightState()
msg.state = result if result in [1, 2, 4] else 0

self.traffic_light_publisher.publish(msg)

def run(self):
self.spin()


if __name__ == "__main__":
roscomp.init("TrafficLightNode")
node = TrafficLightNode("TrafficLightNode")
node.run()
38 changes: 34 additions & 4 deletions code/perception/src/vision_node.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,7 @@ def __init__(self, name, **kwargs):
self.setup_rainbow_subscription()
self.setup_camera_publishers()
self.setup_object_distance_publishers()
self.setup_traffic_light_publishers()
self.image_msg_header = Header()
self.image_msg_header.frame_id = "segmented_image_frame"

Expand Down Expand Up @@ -144,6 +145,10 @@ def setup_object_distance_publishers(self):
self.distance_publisher = self.new_publisher(
msg_type=numpy_msg(Float32MultiArray),
topic=f"/paf/{self.role_name}/{self.side}/object_distance",
def setup_traffic_light_publishers(self):
self.traffic_light_publisher = self.new_publisher(
msg_type=numpy_msg(ImageMsg),
topic=f"/paf/{self.role_name}/{self.side}/segmented_traffic_light",
qos_profile=1
)

Expand All @@ -160,10 +165,9 @@ def handle_camera_image(self, image):

# publish image to rviz
img_msg = self.bridge.cv2_to_imgmsg(vision_result,
encoding="passthrough")
encoding="rgb8")
img_msg.header = image.header
self.publisher.publish(img_msg)

pass

def handle_rainbow_image(self, image):
Expand Down Expand Up @@ -211,8 +215,8 @@ def predict_ultralytics(self, image):
cv_image = self.bridge.imgmsg_to_cv2(img_msg=image,
desired_encoding='passthrough')
cv_image = cv2.cvtColor(cv_image, cv2.COLOR_RGB2BGR)

output = self.model(cv_image)
output = self.model(cv_image, half=True, verbose=False)
distance_output = []
c_boxes = []
c_labels = []
Expand Down Expand Up @@ -246,6 +250,10 @@ def predict_ultralytics(self, image):
image_np_with_detections = torch.tensor(transposed_image,
dtype=torch.uint8)

if 9 in output[0].boxes.cls:
self.process_traffic_lights(output[0], cv_image, image.header)


c_boxes = torch.stack(c_boxes)
print(image_np_with_detections.shape, c_boxes.shape, c_labels)
box = draw_bounding_boxes(image_np_with_detections,
Expand All @@ -262,6 +270,28 @@ def predict_ultralytics(self, image):

# return output[0].plot()

def process_traffic_lights(self, prediction, cv_image, image_header):
indices = (prediction.boxes.cls == 9).nonzero().squeeze().cpu().numpy()
indices = np.asarray([indices]) if indices.size == 1 else indices

min_x = 550
max_x = 700
min_prob = 0.35

for index in indices:
box = prediction.boxes.cpu().data.numpy()[index]

if box[0] < min_x or box[2] > max_x or box[4] < min_prob:
continue

box = box[0:4].astype(int)
segmented = cv_image[box[1]:box[3], box[0]:box[2]]

traffic_light_image = self.bridge.cv2_to_imgmsg(segmented,
encoding="rgb8")
traffic_light_image.header = image_header
self.traffic_light_publisher.publish(traffic_light_image)

def create_mask(self, input_image, model_output):
output_predictions = torch.argmax(model_output, dim=0)
for i in range(21):
Expand Down
Loading

0 comments on commit 5b2a367

Please sign in to comment.