Skip to content

Example 1: Measles Model

Yvan Guifo edited this page Apr 20, 2022 · 20 revisions

The SEIR with demographic model

The most appropriate model representing measles epidemics is the SEIR with demography model in which individuals are categorised in for classes: first, all the newborn individuals are assumed in Susceptible (S), then enter in Exposed (E) class who are infected but not yet infectious, become Infectious (I) and finally change to Recovery R. The system of ODEs represents this model is following:

ODE system of Measles model

Kendrick script to specify this model

KModel SIR
	attribute: #(status -> S I R);
	parameters: #(beta lambda gamma mu);
	transitions: #(
		S -- lambda --> I.
		I -- gamma --> R.
		status -- mu --> Empty.
		Empty -- mu --> S.
	).	
    
KModel SEIR
	extends: 'SIR';
	parameters: #(sigma);
	delay: #(sigma , S -- lambda --> I  , E).
    
Composition Measles
    model: 'SEIR'.
    
Scenario MeaslesParameters
	 on: 'Measles';
    beta: 0.0000214; 
    gamma: 0.143; 
    mu: 0.0000351; 
    sigma: 0.125;
	 lambda: #(beta*I).

    
Scenario MeaslesPopulation
    on: 'Measles';
    S: 99999;
    I: 1;
    others: 0.
    
Simulation MeaslesRKSim rungeKutta
	scenarios: #(MeaslesParameters MeaslesPopulation);
	from: 0.0; 
	to: 150; 
	step: 1.
	
Visualization MeaslesDiagramViz diagram 
	for: 'MeaslesRKSim';
	xLabel: 'Time (days)';
	open.

Dynamics obtained from applying RK4 Solver on the measles model

Custom sidebar of the Kendrick Wiki

Basic-SIR

SIR---Metapopulation

Clone this wiki locally