-
Notifications
You must be signed in to change notification settings - Fork 14
Example 1: Measles Model
Yvan Guifo edited this page Apr 20, 2022
·
20 revisions
The most appropriate model representing measles epidemics is the SEIR with demography model in which individuals are categorised in for classes: first, all the newborn individuals are assumed in Susceptible (S), then enter in Exposed (E) class who are infected but not yet infectious, become Infectious (I) and finally change to Recovery R. The system of ODEs represents this model is following:
KModel SIR
attribute: #(status -> S I R);
parameters: #(beta lambda gamma mu);
transitions: #(
S -- lambda --> I.
I -- gamma --> R.
status -- mu --> Empty.
Empty -- mu --> S.
).
KModel SEIR
extends: 'SIR';
parameters: #(sigma);
delay: #(sigma , S -- lambda --> I , E).
Composition Measles
model: 'SEIR'.
Scenario MeaslesParameters
on: 'Measles';
beta: 0.0000214;
gamma: 0.143;
mu: 0.0000351;
sigma: 0.125;
lambda: #(beta*I).
Scenario MeaslesPopulation
on: 'Measles';
S: 99999;
I: 1;
others: 0.
Simulation MeaslesRKSim rungeKutta
scenarios: #(MeaslesParameters MeaslesPopulation);
from: 0.0;
to: 150;
step: 1.
Visualization MeaslesDiagramViz diagram
for: 'MeaslesRKSim';
xLabel: 'Time (days)';
open.