-
Notifications
You must be signed in to change notification settings - Fork 1
lecture_02
Kurt Robert Rudolph edited this page Jun 11, 2012
·
13 revisions
pg.16 # 3, 7, 8, 14 pg.18 # 8, 9, 12, 13
Read 1.1 - 1.5
[{\left( {1 + x} \right)^h} = \sum\limits_{k = 0}^n {n \choose k} x^k ]
[ {n \choose k} = \frac{ n!}{ k!( n - k)!}]
[{\left( {1 + x} \right)^h} = (1 + x)(1 + 3x + 3x^2 + x^3)]
[=] [1] [3x] [3x^2] [x^3]
[ {n \choose k} + { n \choose k+1} = {n+1 \choose k+1}]
[ \frac{ n!}{ k!( n-k)!} + \frac{ n!}{ (k+1)!(n-k-1)!} = \frac{ n!}{k!(n-k-1)!} \left( \frac{ 1}{ n-k} + \frac{ 1}{ k+1} \right)]
[ \frac{ (n+1)!}{ (k+1)!(n-k)! } = {n+1 \choose k+1}]
2600 years ago: many facts
"theorems from axioms"
2300 years ago (Euclid).
Accurate facts about odds in gambling known around 17th centry
"theorems from axioms" about 1930 (kolmogovov)