Skip to content
Kurt Robert Rudolph edited this page Jul 10, 2012 · 1 revision

Tue Jul 10 09:02:51 CDT 2012

Notes for homework due Wednesday

p.228 # 11 converging problem. Assume [g(x)] is not a huge function, say [|g( x)| < e^{M x}] for som fixed [M > 0]

Types of Random Variables

  • Bernoulli [\subseteq] Binomial [(n,p)]
    • [p( i) = {n \choose i} p^i (1 - p)^{n - i}]
    • [E[ X] = n p]
    • [Var( X) = n p (1 - p)]
  • Poisson
    • [p( i) =\frac{ e^{-\lambda} \lambda^i}{ i!}]
    • [E[ X] = Var( X) = \lambda]
  • Geometric
    • [p( i) = p (1 - p)^{i - 1}]
    • [E[ X] = \frac{ 1}{ p}]
    • [Var( X) = \frac{ 1 - p}{ p^2}]
  • Uniform [\subseteq] Beta
  • Normal
  • Exponential [\subseteq] Gamma
  • Cauchy
    • [f(x) = \frac{ 1}{ \pi (1 + x^2)}]

Also note:

  • Stirling's Formula
    • [k! \sim k^{k + \frac{ 1}{ 2}} e^{-k} \sqrt{ 2 \pi}]
Clone this wiki locally