-
Notifications
You must be signed in to change notification settings - Fork 1
lecture_25
Kurt Robert Rudolph edited this page Jul 10, 2012
·
1 revision
p.228 # 11 converging problem. Assume [g(x)] is not a huge function, say [|g( x)| < e^{M x}] for som fixed [M > 0]
- Bernoulli [\subseteq] Binomial [(n,p)]
- [p( i) = {n \choose i} p^i (1 - p)^{n - i}]
- [E[ X] = n p]
- [Var( X) = n p (1 - p)]
- Poisson
- [p( i) =\frac{ e^{-\lambda} \lambda^i}{ i!}]
- [E[ X] = Var( X) = \lambda]
- Geometric
- [p( i) = p (1 - p)^{i - 1}]
- [E[ X] = \frac{ 1}{ p}]
- [Var( X) = \frac{ 1 - p}{ p^2}]
- Uniform [\subseteq] Beta
- Normal
- Exponential [\subseteq] Gamma
- Cauchy
- [f(x) = \frac{ 1}{ \pi (1 + x^2)}]
Also note:
- Stirling's Formula
- [k! \sim k^{k + \frac{ 1}{ 2}} e^{-k} \sqrt{ 2 \pi}]