Skip to content
Kurt Robert Rudolph edited this page Aug 2, 2012 · 1 revision

Final 1:00 - 3:00

  • No decks of cards
  • No Baye's
  • Little or nothing on zeng letures
  • about 20% more content than the midterm

Review

  • Expectation
  • Variance
  • Joint Distribution and Densities
  • Covariance
  • Sums of random variables
  • Sums of independent random variables
  • Use of moment generating functions
  • The page 358-359 tables:
    • know about various distrobutions and their moment generating functions
    • ESPECIALLY
      • Binomial
      • Poisson
      • Geometric
      • Uniform
      • Exponential
      • Normal

DNHI

Say [M(t) = \frac{ 1}{ n + 1} (1 + e^t + e^{2t} + \cdots + e^{n t})]

  • find [E(X)]
    • [M'(0) = \frac{ 1}{ n + 1}( 1 + 2 + \cdots + n) = \frac{ n}{ 2}]
  • find [Var( X)]
    • [M''( 0) - (M'(0))^2 = \frac{ n(2n + 1)}{ 6} - \frac{ n^2}{ 4}]
Clone this wiki locally